Khirbat al-Mana‘iyya: an early Islamic-period copper-smelting site in south-eastern Wadi ‘Araba, Jordan

Ian W.N. Jones1,2 | Erez Ben-Yosef3 | Brita Lorentzen4 | Mohammad Najjar2 | Thomas E. Levy1,2

1Department of Anthropology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0532, USA
2Levantine and Cyber-Archaeology Laboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0532, USA
3Institute of Archaeology, Tel Aviv University, PO Box 39040, Ramat Aviv, Tel Aviv, 69978, Israel
4Cornell Tree-Ring Laboratory, B-48 Goldwin Smith Hall, Cornell University, Ithaca, NY, 14853–3201, USA

Correspondence
Ian W.N. Jones
Email: iwjones@ucsd.edu

Funding information
Kershaw Family Foundation; Katzin Family Foundation; National Science Foundation, Grant/Award Number: IGERT Award #DGE-0966375; FP7 People: Marie-Curie Actions, Grant/Award Number: 334274; Palestine Exploration Fund

Abstract
Recent excavations in south-eastern Wadi ‘Araba in Jordan have revealed the first early Islamic-period copper-smelting site known in the eastern side of the valley, which extends south of the Dead Sea to the Gulf of ‘Aqaba. Five test pits were excavated in 2012 at Khirbat al–Mana‘iyya, a prominent copper-smelting camp in south-eastern Wadi ‘Araba, Jordan. The results of these excavations demonstrate that the site was primarily active in the seventh–ninth century AD. Its distance from the copper sources of south-west ‘Araba suggests that its location was chosen based on proximity to wood and water resources, rather than copper ore deposits. The discovery that the site dates to the early Islamic period has implications for previous and future work in south-east ‘Araba. In particular, it challenges the common—until now—view of the region as virtually devoid of settlement during this period.

KEYWORDS
‘Abbasid, copper, early Islamic, Jordan, mining, smelting, southern ‘Araba

1 | INTRODUCTION

Prior to the late 1980s, the existence of an early Islamic period (c. 600–1000 AD)1 copper industry in Wadi ‘Araba—the lowland valley between the Dead Sea and the Red Sea—was entirely unknown.2 This changed after radiocarbon evidence demonstrated first, that a Late Bronze Age furnace at Timna Site 2 had been reused in the eighth century AD,3 and second, that one of the large slag mounds at the Be‘er Ora smelting camp (Arabah Expedition Site 28) dated entirely to the early Islamic period (Rothenberg, 1988). Be‘er Ora had previously been dated to the Roman and Byzantine periods (Rothenberg, 1962: 62; 1972: 222).

In this paper we use the archaeological periodisation developed by Whitcomb (1992; see also Jones, Levy, & Najjar, 2012: fig. 1), who divides the early Islamic period into two sub-periods: the early Islamic I (AD 600–800) and early Islamic II (AD 800–1000).

‘Abbasid (1941) assertion that Khirbat Nuqayb al-Asaymir—which is, in fact, a middle Islamic period site—dated to the early Islamic period. This was based on a misreading of Gheek (1940) and does not seem ever to have been taken seriously (see Jones et al., 2012: 72, n. 5).

Furthermore, the current study strengthens the view of U. Avner and Magness (1998), Ben-Yosef et al. (2012), and U. Avner (2014) that this furnace—Furnace Z—as well as some others at the site, were constructed in the early Islamic period, as they demonstrate similar technological features to the smelting installations at Khirbat al-Mana‘iyya, unknown in smelting sites dated to the Late Bronze Age (contra Erickson-Gini, 2014). Even if this were not the case, however, it is certain that at least two of these furnaces were reused during the early Islamic period (see radiocarbon dates nos. 78–79 in Avner U. 2014: 146, table 1).
and the realisation that it was primarily active during the early Islamic period prompted a re-evaluation of the archaeology of southern ‘Araba. In the decades since, it has become clear that Be’er Ora is not a unique outlier, but rather part of an extensive system of settlements in southwestern ‘Araba forming the industrial ‘hinterland’ of the early Islamic port of Ayla, modern ‘Aqaba, on the Red Sea coast (Fig. 1; Avner U. & Magness, 1998; Damgaard, 2009; Jones, Najjar, & Levy, in press; Nol, 2015; Whitcomb, 2006a). Until now, it seemed that evidence for this settlement system was limited to south-western ‘Araba, in modern southern Israel. This paper, however, presents evidence from a pilot season of excavations at Khirbat al–Mana’iyya—the first early Islamic-period copper-smelting site identified in south-eastern ‘Araba, in modern Jordan—conducted in 2012 by the University of California, San Diego Edom Lowlands Regional Archaeology Project (ELRAP).

1.1 Distinctive features of the early Islamic-period copper industry

The early Islamic copper industry is marked by the emergence of a quite distinctive smelting technology. The slag pits of the domed bowl furnaces4 used during this period were designed to cast a central hole in circular plates of slag (Rothenberg, 1990: 57). This central hole presumably made the plates easier to discard or transport to processing areas by allowing them to cool faster and to be removed in one piece (Fig. 2a). Additionally, the central hole may have made it easier to break up the slag plates for reprocessing and to recover copper prills. The central hole on the ring

4The term ‘bowl furnace’ is not meant to imply that these furnaces would have been open. As demonstrated by examples from Be’er Ora (Rothenberg, 1999: 166, 167, fig. 27) and al-Nuqra (North) (de Jesus et al., 1982: 72, 74), these furnaces probably had a dome-shaped superstructure.
slags discussed here is usually c.20 cm in diameter, but on some examples, such as the one presented in Figure 2a, this can be under 10 cm. The entire ring slag is usually between 60 and 80 cm in diameter, weighing c.80 kg. These slags can also be distinguished by their prominent, often rather sharp flow-banding (Fig. 2b). This feature has not been observed on earlier slags and is present only rarely on the middle Islamic-period slags—which are not ring slags—found in the Faynan region. The available evidence indicates that Rothenberg (1990: 60) is probably correct in suggesting that the central hole in ring slag ‘seems to have been a locally developed metallurgical tradition of the Arabah’, even if it is also the case, as suggested by Bachmann (1980: 114), that the use of lime flux reflects an imported smelting technology. It is difficult to determine whether this type of slag is present nearby in the Hijaz, in modern Saudi Arabia, due to the limited amount of recent archaeological research in the region and summary reporting of previous investigations (for earlier surveys, see Kisswani, de Jesus, & Rihani, 1983: 79; Sabir 1991). Farther to the east, however, excavations at al-Nuqra (North)—a large, early Islamic-period copper-smelting site in the western Najd (Fig. 3)—have produced evidence of the use of a similar furnace technology, but with slag pits that were not designed to cast in the central hole found in ring slag (de Jesus et al., 1982: 71–72, 74, pls. 87A, 88A, 97B). Recent work in the region of al-Baha, in the south-western Hijaz, has produced similar results (Al-Zahrani 2014). Further afield, furnace technologies are less similar. In eastern Arabia, for example, archaeological work at several sites in Oman has demonstrated the use of a shaft furnace technology rather different from the domed bowl furnaces in use in southern ‘Araba and north-western Arabia (Ibrahim M.M. & ElMahi, 2000: 212–213; Weisgerber, 1987: fig. 76).

Assuming ring slag is unique to the ‘Araba, its origins are not entirely clear. Rothenberg (1990: 60) argued that it demonstrates continuity of smelting traditions developed during the Late Bronze Age. U. Avner and Magness (1998: 52–53, n. 7), on the other hand, argue that “current evidence suggests that these slag cakes did not appear before the Nabataean period”, and Ben-Yosef et al. (2012: 59, n. 14) argue that while solid slag cakes first appear in the Iron Age (late tenth century BC), the cast-in hole does not appear earlier than the Nabataean period.

U. Avner and Magness’s (1998) Nabataean period date for ring slag is probably too early.⁵ Although evidence for copper production during this period is sparse in southern ‘Araba, ring slag is not found at the large Roman slag mound at Khirbat Faynan (Hauptmann, 2007: 94–96) or at the much smaller site of ‘En Yahav, c.25 km to the west, where smaller-scale Roman period smelting seems to have taken place (Yekutiel, Shilstein, & Shalev, 2005; see also Rothenberg, 1967: 129–129). Instead, the early Islamic furnace technology of southern ‘Araba seems to be unique to this period, different from both the preceding Roman

⁵ They state that, ‘ceramic and Carbon-14 evidence indicates that although this site [Be’er Ora] first became active during the Nabataean period and was used during the Mamluke period, the most intensive activity took place during early Islamic times’ (Avner U. & Magness, 1998: 42–43). To date, no Nabataean or Roman period radiocarbon dates have been published for Be’er Ora (a summary of published dates for Be’er Ora can be found in Avner U., 2014: 146, table 1, nos. 80–88), suggesting that the Nabataean date relies on ceramic evidence. Linking these sherd to copper production activity is more difficult, however. As in Faynan, we would argue that reliance on direct dating of copper smelting remains is safer than assuming copper production during every period of occupation (see e.g. Jones, Najjar, & Levy, 2014). Recent research does suggest that the mines in Wadi ‘Amram were active in the Nabataean period, but the associated smelting sites are not yet known (Avner U. et al., in press: 156, table 10.1, 159, 161, 173). Assuming that copper was produced at Be’er Ora or elsewhere in south-western ‘Araba during the classical period, we know virtually nothing about the furnace technology that would have been used—certainly, we do not have enough evidence to suggest that ring slag emerged in this period.
technology and possibly the middle Islamic technology that followed, which has much in common with the shaft furnace technology of early Islamic Oman (see Hauptmann, 2007: 127; Jones, 2016: 116–119; Levy et al., 2012: 428–429). 6

1.2 | The site and history of exploration

Khirbat al–Mana’iyya (Fig. 4)—or Wadi al–Nukhayla 1—is a c.0.5 ha copper smelting camp located to the south of Wadi al-Nukhayla (Ar. for “wadi of palm trees”), c.3.5 km south of the modern Bedouin village of al-Qatar. The wadi’s name could not be found on maps of the region—the closest wadi mentioned by name on the geology map is Wadi al-Wara (Ibrahim K.M.d.K., 1989)—but there is a Jabal al-Nukhayla several kilometres to the east, and the name of the wadi is probably associated with this feature. 7 The three slag mounds at the site contain an estimated “several hundred tons” of slag (Ben-Yosef, 2012: 64), which is more than any site in the Timna Valley, but less than Be‘er Ora, which is estimated to contain 5000 tons of slag (Avner U. & Magness, 1998: 42).

Ben-Yosef (2012: 64) points out the similarity of the site’s name to that of the Timna Valley, which in Arabic is known as al-Mana‘iyya (see e.g. Glueck, 1935: 42–45). The biblical name ‘Timna’ has an association with the clans of Edom (Genesis 36: 40–43; 1 Chronicles 1: 51), and because it sounds like Mana‘iyya it was the name chosen during the ‘Hebraization’ of place names early in the history of the modern state of Israel (Ben-Yosef, 2012: 64, n. 6; on this process generally, see Benvenisti, 2000). The Arabic toponym al-Mana‘iyya seems to be used in southern Wadi ‘Araba to refer to sites with copper slag mounds (see

6 It is interesting to note, however, that U. Avner and Magness (1998: 52) published two middle Islamic-period radiocarbon dates (nos. 21–22) from Be‘er Ora. The bulk of the smelting activity at the site is, nonetheless, early Islamic.

7 It is important to note, however, that this is not the wadi recorded by the Southeast ‘Araba Archaeological Survey (SAAS) as Wadi al-Nukhayla. Their Wadi al-Nukhayla is c.25 km north of ours, near Jibal Umm Nukhayla, not far to the south of Wadi Gharandal (Smith, 2014: figs. 4.2, 4.46). There are, in fact, dozens of wadis bearing this name in Jordan.
Ben-Yosef, 2016: 171), which are the most obvious feature of Khirbat al-Mana’iyya.

Prior to Ben-Yosef (2012), Khirbat al-Mana’iyya was briefly mentioned by Weisgerber (2006: 25), who seems to have visited the site and correctly dated it to the early Islamic period, although he did not publish a description. The site is also marked on the geology map for the Wadi Rahma region as an ‘ancient smelting site’, but the associated publication does not include a description of the site, nor is an attempt made to date it (Ibrahim K.M.d.K., 1989; with a brief discussion in 1991: 107). The site was not found by the Southeast ‘Araba Archaeological Survey (SAAS), as it falls outside the areas they intensively surveyed (Smith, 2014). Ben-Yosef (2012), therefore, was the first to publish a detailed description. Based on the solid slag cakes visible on the surface of the site, he suggested that the site should be dated to the Iron Age II or later (Ben-Yosef, 2012: 68), and discussed it as an Iron Age site, a claim that is retracted here. Reconnaissance in 2012 quickly revealed that these were in fact fragments of early Islamic-period ring slags, and additional evidence from the excavations—discussed below—confirms this date.

2 | THE 2012 EXCAVATIONS

The 2012 excavation season was aimed at understanding a range of metallurgical activities at the site and consisted of several small probes in five areas: a slag mound, a building, an ore crushing or storage installation, and two possible furnaces (Fig. 5). Due to the small area excavated, the relatively shallow nature of many of the deposits, and the lack of diagnostic artefacts, many of our conclusions about the function of the excavated features remain tentative. The data collected, including samples for radiocarbon dating reported here, however, allow for some conclusions about the nature of early Islamic copper production to be reached.

2.1 | Slag Mound 1

The largest area excavated was Square B, a 2 x 3 m probe in Slag Mound 1 (Fig. 6a; SM1). This area was chosen for excavation because of the presence of a semi-circular feature (L. 003) visible on the surface of SM1. On excavation, this was revealed to be a semi-circular, five-course wall built of slag (Fig. 6b). A straight wall built of small to medium stones and slag pieces (L. 007) was also found at the southern end of the square. The exact purpose of these features is unclear. Structures built of slag have been found at other smelting sites in the southern ‘Araba, with the
best-known example being the slag-built musalla at Be‘er Ora (Rothenberg, 1988; Sharon, Avner, & Nahlieli, 1996). Features like L. 003 and 007 are also known at Be‘er Ora but are currently unpublished. Given the small size of the probe, we were unable to verify that these features form a single structure, but it is possible that the function of these two walls was simply to contain material being dumped into the slag mound. Finds from Square B consisted primarily of medium to large pieces of slag, as well as some tuyere and furnace fragments (Fig. 7). A layer of relatively large ring slag fragments (L. 006) was found beneath L. 003, while the southern portion of the square, near L. 007, contained more small fragments of slag than the northern portion, as well as charcoal fragments.

2.2 | Installation 1

Installation 1 is a small (c.2 x 2 m), square structure 8 m to the west of SM1, with walls preserved from one to five courses (Fig. 8). Two 1 x 1 m probes were opened in this area in an attempt to clarify the purpose of the installation: Square C4, inside the structure, and Square C5, outside. Deposits in both squares consisted only of a shallow, ashy layer before bedrock was reached. Finds were extremely rare, limited to a single hammer stone and a small amount of charcoal. The plan of Installation 1 is typical of the ‘modular’ architecture of early Islamic sites in ‘peripheral regions’ (Whitcomb, 2006b: 27), and similar structures are known in southern ‘Araba, for example at Be‘er Ora (Yisrael, 2002: 126, fig. 163) and Eilat (Rapuano, 2013: 130, plan 1), and in the southern Jordanian Hisma in Wadi Shira (al-Bqā‘īn, Corbett, & Khamis, 2015: 96–106). At these sites, modular rooms are found both individually and as part of linear units, but none of these larger, linear complexes were found at Khirbat al-Mana‘iyya. Haiman (1995: 41), U. Avner and Magness (1998: 40), Magness (2004: 20), and Whitcomb (2006b: 35) suggest an association between this type of settlement complex and sedentarisation of Bedouin in the eighth and ninth centuries, and the presence of one of these buildings at Khirbat al-Mana‘iyya might suggest an association between the workforce there and this phenomenon.

2.3 | Installation 2

Installation 2 is a large (c.12 m in diameter) ore crushing or storage area located at the higher elevations of the eastern end of the site. Surface finds included many small pieces of copper ore, and a 1 x 0.5 m probe was excavated in order to recover larger pieces of ore for laboratory analysis. Unfortunately, none was recovered from this probe. Finds from L. 001 were limited primarily to small ore pieces similar to those found on the surface, while little was found in L. 002 beyond a hammer stone and decomposed granite. Below L. 002 the excavations reached bedrock.

2.4 | Furnace Probes 1 and 2

Furnace Probes 1 and 2 (F1 and F2) were not separate furnaces, but rather two 1 x 1 m probes in the northern area of the site. In both probes, a layer of ash and burnt rock was found 1–2 cm below the topsoil, indicating a high-temperature fire and, probably, the presence of a furnace. This is also suggested by the presence of furnace fragments, which were found in F2 but not in F1. Apart from furnace fragments, stone, and several charcoal fragments, the probes in F1 and F2 yielded few finds.

3 | CERAMICS

As with many other smelting camps in southern ‘Araba, ceramics are uncommon at Khirbat al-Mana‘iyya. Very few sherds were found during the 2012 season, and the majority of these—including all rim sherds—came from the
surface of Slag Mounds 1 and 2. The diagnostic sherds collected in 2012 belong to two vessels, although body sherds of other vessels are present. The vessels for which diagnostic sherds were recovered are discussed in detail below.

Both represent forms that emerge in the final quarter of the early Islamic I and are typical of the first half of the early Islamic II in southern ‘Araba.

One of these, Reg. 44667 (Fig. 9/1), is a white-slipped bowl with a squared rim recalling Phocaean Red Slip 3 and related to Late Roman red-slipped wares (e.g. Egyptian Red Slip A, Form J; on these wares, see Hayes, 1972). The fabric is reddish and well fired, and tempered primarily with coarse sand. Some mica flecks are visible on the surface, as well as a very few small vegetal voids. The form and fabric of this bowl belong to Whitcomb’s (1989) Mahesh Ware, which first appears c. AD 750 and is
especially common in the first half of the early Islamic II. Similar bowls are found at Ayla/Aqaba (early ‘Abbasid, i.e. AD 750–900—Whitcomb, 1989: 280, fig. 3b), Eilat (early ‘Abbasid/ninth century—Rapuano, 2013: 146, fig. 19.3.5), and ‘En ‘Avrona (early Islamic—Porath, 2016: 24*, fig. 26.6–7, 10–11, 13). A similar form is also present in the middle Islamic levels at Tell Jemmeh, but the parallels provided suggest a late Byzantine–early Islamic date (Schaefer, 1989: 39, fig. 4.2).

The other, Reg. 44586 (Fig. 9/2), is a simple, small bevel-rim bowl with an exterior cream slip. The fabric is reddish and well fired and tempered primarily with coarse sand. Some mica flecks are visible on the surface, and small grogs or argillaceous inclusions are visible in the breaks. This form is much more common than the previous example but should also be considered Mahesh Ware and dated similarly. Parallels are found at Ayla/Aqaba (early ‘Abbasid—Whitcomb, 1989: 281, fig. 4m–o), Eilat (early ‘Abbasid/ninth century—Avner R., 1998: 30*, fig. 12.7; Rapuano, 2013: 146, fig. 19.10–12), ‘En ‘Avrona (early Islamic—Porath, 2016: 21*, fig. 25.4–5), Be‘er Ora (south-east) (early Islamic—Yisrael, 2002: 127, fig. 165.2), Sede Boqer (early Arab—Nevo, 1991: 154, pl. 6.17–18), and in the survey assemblage from Khirbat Faynan (early Islamic—Adams, Johnson, & Tomber, 2007: 783–784, no. 579). This form is also very similar to Magness’s (1993: 194, 196) Fine Byzantine Ware Bowl 1E, dated to the eighth–nineth century AD, and to the widely known early Islamic wares of central and northern Jordan found, for example, at al-Muwaqqar (‘Abbasid—Najjar, 1989: 313, fig. 5.10), Tall Hisban (Umayyad—Sauer, 1973: 41, fig. 3.123; early Islamic I—Walker, 2012: 510, fig. 4.1.20), and Khirbat al-Mafjar (AD 750–800—Whitcomb, 1988: 55, fig. 1D), among others, although this last group is often painted. A similar small bowl was found during Rothenberg’s (1972: 222, fig. 72.5) excavations at Be‘er Ora, but dated, along with the rest of the pottery from the site, to the second century AD. It is likely that this should, in fact, also be dated to the late eighth–ninth century.

4 | DATING

The limited ceramic material from Khirbat al-Mana‘iyya suggests a date in the late eight–ninth century, or the late early Islamic I to the early Islamic II. Because of the small number of datable artefacts, we also processed a radiocarbon date from a fragment of acacia charcoal from F2 L. 001 in order better to understand the chronology of the site. The calibrated date places the use of the furnace between AD 654 and 758.10

There is not, necessarily, a contradiction between these dates. The lack of stratigraphy in F2 makes it impossible to say whether this sample dates the beginning, end, or middle of production in F2. Likewise, it is impossible to rule out error from potential inbuilt age bias in the wood (the ‘old-wood effect’). The charcoal from Khirbat al-Mana‘iyya, including the material sampled for radiocarbon, is extremely fragmentary, so it was not possible to find charcoal from a secure context containing bark and the outermost (most recent) tree-rings, or from small-diameter branches, which would minimise inbuilt age bias and give a date close to the tree’s harvesting. Acacia, which comprises the majority of the charcoal recovered from Khirbat al-Mana‘iyya, can in fact grow for several centuries (see Andersen & Krzywinski, 2007). Hauptmann (2007: 155), for example, notes that the exploitation of older trees might have skewed the radiocarbon dates from a Roman period slag mound in Faynan by at least a century, and Ben-Yosef et al. (2012: 63) found an offset of up to 160 years

| FIGURE 9 | Diagnostic pottery from Khirbat al-Mana‘iyya (illustrations: I.W.N. Jones) |

| FIGURE 9 | Diagnostic pottery from Khirbat al-Mana‘iyya (illustrations: I.W.N. Jones) |

between 14C dates on acacia wood and short-lived seeds at Timna. There is also evidence from charcoal analysis that the Khirbat al-Mana’iyya acacia samples were already dead when harvested (see below), creating an even greater potential offset. The 14C sample date can therefore be considered only as a *terminus post quem* for smelting activity.

More generally, the date of the earliest phase of the industry is still an open question. Again, reference to the western Arabian mining industry is informative. Heck (1999, 2003) argues that the Arabian mining industry was already quite large by the seventh century, and played a pivotal role in the emergence of the earliest Islamic state. Power (2012), in a recent re-evaluation of this evidence, suggests that the situation might not be so clear. Instead, he suggests a possible relationship between the mines and the ‘Abbasid Darb Zubayda—the route from Baghdad to Mecca—noting that ‘the steady flow of gold to the mint of Baghdad should not be ignored’ when considering the development of this route (Power, 2012: 124). This is interesting in light of the evidence from al-Nuqra, which, although limited, points to mineral exploitation, including copper, primarily during the ‘Abbasid period (de Jesus et al., 1982: 63; see discussion in Power, 2012: 123). Likewise, al-Rabadha—a large town situated roughly halfway between the mines at al-Nuqra and Mahd al-Dhahab on the Darb Zubayda—although occupied at least as early as the seventh century AD, was economically important primarily in the eighth–tenth century, probably because of its association with the mines (al-Rashid, 1986: 14). For Wadi ‘Araba, it has been the case for several decades that ceramics and other diagnostic artefacts from early Islamic sites tend to date to the eight–ninth century, while radiocarbon dates from the same sites give a range between the seventh and eleventh centuries (Avner U. & Magness, 1998: 51). Unfortunately, Nol’s (2015: 53–55) recent review of this evidence shows that the situation remains the same, and the evidence from our investigation of Khirbat al-Mana’iyya follows the same pattern. There are three short plateaus (on the term, see Guilderson, Reimer, & Brown, 2005) in the radiocarbon calibration curve that may contribute to this problem, covering the mid-seventh to mid-eighth century, the ninth century, and much of the tenth century. The radiocarbon sample from Khirbat al-Mana’iyya falls into the first plateau, but this early date may also be related to the use of deadwood for charcoal (discussed below).

One potential exception to the pattern discussed above is worth noting. Damgaard (2009: 89) argues that mining occurred in southern ‘Araba as early as the seventh century, but that during this early phase, ore was transported to and smelted in the city of Ayla. He argues that evidence from the excavations of Ayla’s congregational mosque supports this view, as pieces of copper slag were found in the pre-construction phases (Damgaard, 2009: 89). In this view, then, smelting begins outside Ayla only in the mid-eighth century, but mining in southern ‘Araba occurred during the seventh or early eighth century as well. As Nol (2015: 65, n. 4) has recently noted, however, it is difficult to evaluate this evidence, as the excavations have not been fully published, and the context and quantity of the slag itself is unclear. Beyond this, Whitcomb (2006a: 241) refers to the same objects as ‘cut fragments of copper, wastage of copper object production within the city’, suggesting that they may not be pieces of slag at all. It is likelier, instead, that this is either debris from copper object production or from recycling, as Ponting (2008: 55, 58) found to be the case for an eleventh-century hoard from Tiberias (and see additional examples in Jones, Levy, & Najjar, 2012: 93–94). When published, it is possible that these data may force a re-evaluation of the beginnings of the early Islamic southern ‘Araba copper industry. This, however, does not have any direct bearing on the dating of Khirbat al-Mana’iyya.

Given our current knowledge of early Islamic ceramic typologies in southern ‘Araba, and Power’s (2012) re-evaluation of the western Arabian evidence, Nol’s (2015: 53) decision to accept an eighth–ninth-century date for the early Islamic settlements of southern ‘Araba is sensible. If the premise that these industrial settlements are connected to the development of the hajj routes is accepted, however, Petersen’s (1994: 48) claim that ‘the Syrian pilgrimage route benefitted under the Umayyad dynasty based in Damascus, whilst the Iraqi routes [primarily Darb Zubayda, connecting Baghdad to the Hijaz] were developed during the Abbasid dynasty based in Baghdad’ should also be considered. With this in mind, an earlier initial development in association with the development of the hajj route from Damascus, in the late seventh–early eighth century, might be proposed for the southern ‘Araba system, which was maintained and perhaps expanded into the ninth century at least. While comparison to other sites suggests that Khirbat al-Mana’iyya probably dates to the eighth–ninth century, it is presently safest to suggest a seventh–ninth-century date. Refining this date will require more research, both at Khirbat al-Mana’iyya and in southern ‘Araba more generally.

5 GEOLOGICAL AND ENVIRONMENTAL CONSIDERATIONS

Copper mineralisation in southern ‘Araba is concentrated primarily in the south-west, in the region of Timna and nearby Wadi ‘Amram. There, copper is found in the sandstone of the Avrorna and Amir Formations and the dolomite
and shales of the Timna Formation (Hauptmann, 2007: 66–67; Shlomovitch et al., 1999: 196–197). These have equivalents in the Faynan region of north-eastern ‘Arabia, c.105 km north-east of Timna, due to the fact that these deposits formed together and were later separated by tectonic movement (Hauptmann, 2007: 68). As a result of these geological processes, substantial copper deposits tend to be limited to north-east and south-west ‘Arabia. Copper-smelting sites generally tend to be found in close proximity to copper deposits, and archaeological survey in these regions confirms that this is the case.\footnote{The early copper metallurgy of the Chalcolithic period represents the major exception to this rule, with smelting sites located as far as 100 km from probable ore sources (see e.g. Shalev & Northover, 1987: 362). The socio-political factors behind this long-distance transport of ore are discussed by Levy (1995), but do not affect our broader claim here.} While numerous copper smelting sites are found in Faynan (see Barker, Gilbertson, & Mattingly, 2007; Hauptmann, 2007; Levy, Najjar, & Ben-Yosef, 2014)—although none of these, at present, can be dated to the early Islamic period (Jones et al., 2012: 70; 2014: 182–185)—very few, small smelting sites are known in north-west ‘Arabia, for instance, ‘En Yahav (Yekutieli et al., 2005). Likewise, many smelting sites are found in south-west ‘Arabia (see Avner & Magness, 1998: 40–44; Rothenberg, 1972; 1999), but relatively few have been found in south-east ‘Arabia (other than Khirbat al-Mana’iyya; see Smith, 2014: 217–219).

For the early Islamic period, in particular, the largest dated copper mines in southern ‘Arabia are those in Wadi ‘Amram (Avner U. et al., in press; Willies, 1990, 1991), c.7 km south-west of Be’er Ora and 20 km south-west of Khirbat al-Mana’iyya. Smaller mines of the same period are also known in Nahal Rehav’am, which is c.15–20 km south of Wadi ‘Amram, between Eilat and Taba (Shmueli, Lender, & Lifshits, 2013), and to the west and south-west of Taba (Avner U. & Magness, 1998: 40). These smaller mines are likely to have been sources for smelting camps closer to Ayla. Based on proximity, the Timna Valley proper, c.15 km to the west, seems the likeliest source of ore for Khirbat al-Mana’iyya, although the large Wadi ‘Amram mines are also a possibility.

In contrast, geological mapping across Wadi ‘Araba to the east of Timna found only ‘traces of copper and manganese’ (Ibrahim K.M.d.K., 1991: 102). There is potential copper mineralisation c.12 km to the east of Khirbat al-Mana’iyya, near Jabal Abu Saq’a and Jabal al-Dahmi (1991: 102), but based on presently available evidence, it is not clear that the area was ever mined. Fifteen kilometres to the north, in Wadi al-Khubat, there is another source of copper with some evidence of exploitation (see discussion in Ben-Yosef, 2012: 69, n. 8; Haviv, 2000: 219). Neither of these sources, however, is particularly substantial, and it is worth noting that none of them is much closer to Khirbat al-Mana’iyya than the sources in south-west ‘Arabia. While it is possible that they were exploited during the early Islamic period, it is very unlikely that they represent the primary ore sources for Khirbat al-Mana’iyya. This raises the question of why this location, not particularly close to any ore source, was chosen for a copper-smelting site.

Ben-Yosef (2012: 69–72) speculated that the location of Khirbat al-Mana’iyya was attractive primarily due to its proximity to two resources uncommon in south-west ‘Arabia, and particularly uncommon in the Timna Valley: water and wood (Fig. 10). A similar argument has been put forward to explain the location of Early Bronze Age ‘En Yahav in north-west ‘Arabia, which is c.20 km from its likely ore sources (Yekutieli et al., 2005: 19). A nearby source of water has obvious benefits, and proximity to wood resources may have been more important than proximity to ore sources. For much ancient copper smelting, more wood than ore would have been required, which would have made transporting the ore to the fuel source an efficient choice (Ben-Yosef, 2012: 71; Hauptmann, 2007: 52–53). Published charcoal assemblages for early Islamic

\[\text{FIGURE 10} \quad \text{The location of a potential water source south of Khirbat al-Mana’iyya. Note also the acacia trees dotting Wadi al-Nukhayla (map: IWNJ, base map: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community) [Colour figure can be viewed at wileyonlinelibrary.com]}\]
smelting sites in southern ‘Araba are uncommon, but ten charcoal samples were collected during excavations at Be’er Ora. Of these, six were from Acacia species, two from Tamarix aphylla, and two from Suaeda monoica (Avner U. & Magness, 1998: 43). While this is a charcoal assemblage with a very small sample size, it nonetheless suggests that acacia was a key source of charcoal for early Islamic copper smelters in southern ‘Araba. Acacia is fairly common around the alluvial fans of Wadi al-Nukhayla, and we expected to find that the majority of smelting fuel used at Khirbat al-Mana‘iyya was acacia charcoal.

Identification of 266 charcoal fragments from four excavation loci from the site suggests that this is the case. Of the 266 fragments in the assemblage, 198 fragments (74%) could be identified to one of five taxa (Table 1). Acacia (Acacia sp.) is by far the most abundant taxon, comprising 87% of the identified fragments, and is present in all sampled loci. The aliform-tangentially confluent parenchyma bands, multi-seriate rays, and thick-walled fibres (Fig. 11a–d) observed indicate that the wood is most likely *Acacia tortilis* (Forssk.) Hayne (Fahn, Werker, & Baas, 1986). The remaining 13% of the identified charcoal assemblage consists of the Chenopodiaceae sub-family of Amaranthaceae, some of which may be identified as white saxaul (*Haloxylon persicum* Bunge) (Fig. 11e); small fragments of white broom (*Retama raetam* [Forsk.] Webb); and other small legume fragments (family Fabaceae), which are too small, too poorly preserved, or lacking sufficient diagnostic features to be identified to genus or species.

Haloxylon persicum (along with several other species in the Chenopodiaceae sub-family) and *Retama raetam* are shrubs found in hot, arid desert and steppe environments and are capable of growing on sandy wadis, alluvial fans, and flood plains, and desert pavement environments, like those found near Khirbat al-Mana‘iyya. These results fit the general pattern of fuel provisioning for copper smelting in southern ‘Araba, and suggest that Khirbat al-Mana‘iyya’s location near these resources made it more desirable for establishing a smelting camp than the Timna Valley to the west.

All three species (*Haloxylon persicum*, *Acacia tortilis*, and *Retama raetam*) are dense woods that produce considerable heat when burnt (Engel & Frey, 1996), which would have made them attractive fuel sources for smelting operations requiring high temperatures. Because the samples have high fragmentation and poor preservation, it was not possible to estimate the approximate diameter and size of the original timber when it was procured. Examination of

Table 1

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Af</th>
<th>%f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia sp.</td>
<td>172</td>
<td>87</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Haloxylon persicum</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Retama raetam</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>266</td>
<td>100</td>
</tr>
</tbody>
</table>

FIGURE 11 SEM microphotographs of wood charcoal specimens from Khirbat al-Mana‘iyya, showing *Acacia* sp.: (a) transverse; (b) radial; (c–d) tangential sections, in which there are fungal hyphae present on vessel walls, indicating burning of deadwood; (e) light microscope photograph of *Haloxylon persicum* transverse section (photos: B. Lorentzen) [Colour figure can be viewed at wileyonlinelibrary.com]
acacia charcoal under a scanning electron microscope (SEM) revealed the presence of fungal hyphae in the vessels, which indicates a collection of dry deadwood (Asouti & Austin, 2005; Moskal-del Hoyo, Wachowia, & Blanchette, 2010). Deadwood is an attractive fuel source because it is easier to collect and carry and does not require additional time to dry out before it is burnt. Use of acacia deadwood may also suggest some degree of ‘tending’ to local acacia in ‘Araba by preferentially trimming dead branches and stems, in order to renew the tree as a source of additional fuel or fodder. Bedouin in the Sinai Peninsula use similar tending practices on modern acacia trees (Andersen et al., 2014), and Ben-Yosef and Levy (2014) have proposed that reverence for the acacia tree by pastoral nomads in the southern Levant affected fuel selection at smelting sites in the Faynan region during the Iron Age.

6 | PRELIMINARY X-RAY FLUORESCENCE (XRF) ANALYSIS

As part of our pilot project, we conducted a preliminary chemical study of the slag from Khirbat al-Mana‘iyya using a Bruker Tracer III-V+ portable X-ray fluorescence (pXRF) spectrometer. Five 300-second surface readings of each sample were taken using instrument settings for analysing heavier elements (40Kv, 15µA, no vacuum, green filter [0.006” Cu, 0.001” Ti, 0.012” Al]). These were then calibrated using data collected by Ben-Yosef (2010) for Iron Age slag from the Faynan region. The means of these calibrated readings are presented here in wt-% (Table 2). Five slag samples from Khirbat al-Mana‘iyya were analysed, as well as four middle Islamic period slag samples from the Faynan region (two from Khirbat Faynan and two from Khirbat Nuqayb al-Asaymir), for comparison.

Several caveats about these data must be kept in mind. First, the readings were obtained from the surface of the slag, rather than slag crushed into a powder. Slag is a heterogeneous material, and readings can vary substantially across the surface of a single sample. While five surface readings were taken from each sample in order to address this problem, this variation has led to rather large standard deviations for many of the elements of interest here, in particular Ca, Fe, Cu, and, for some samples, Mn. Second, these readings were taken using instrument settings primarily appropriate for heavier elements. As such, the wt-% of the lighter elements—K, Ca, and Ba—is probably under-represented. Because it is very light, Si, a major component of slag, is not included in the calibration at all. Third, the fact that the calibration was developed for Iron Age slag from Faynan has probably introduced some error, as the composition of early and middle Islamic-period slag is rather different. The data presented here must, therefore, be considered preliminary, rather than definitive, and further chemical analysis of the slag from Khirbat al-Mana‘iyya is planned for 2018.

Nonetheless, several interesting points emerge from this analysis. Although the wt-% of Ca is probably inaccurate, the samples from Khirbat al-Mana‘iyya are, with the exception of Sample 3, within the range published by Bachmann (1980: 115, table 7) for Be‘er Ora, and significantly higher than the Iron Age samples from Timna analysed by Ben-Yosef (2010: 855, table 8.7). As expected, much more Mn is present in the samples from Faynan, as the ores exploited by the middle Islamic-period miners ‘are intensively intergrown with oxidic manganese ores’ (Hauptmann, 2007: 70). The wt-% of Fe in the samples from Khirbat al-Mana‘iyya is somewhat low compared to Ben-Yosef’s (2010: 855, table 8.7) Iron Age Timna samples, but within the range for the Be‘er Ora samples (Bachmann, 1980: 115, table 7), although the very large standard deviations must be kept in mind. The high wt-% of Fe in the middle Islamic-period slag samples from the Faynan region, particularly Samples 6 and 8, is also noteworthy in light of the very low Fe content in Iron Age (Ben-Yosef, 2010: 851–855, table 8.7) and Roman (Hauptman, 2007: 350–351, table A.4) Faynan slag, but is comparable to middle Islamic slag from the same sites analysed by Hauptmann (2007: 351, table A.4). This reflects engagement with Fe-rich copper ore sources (see Hauptmann, 2007: 71) in the middle Islamic period and/or the use of iron oxides as flux, a practice that might be related to the adventitious production of iron identified at Khirbat Nuqayb al-Asaymir (Hauptmann, 2007: 96, 126–127; Jones, 2016: 121).

7 | IMPLICATIONS

7.1 | Settlement patterns in southern ‘Araba

Our pilot season at Khirbat al-Mana‘iyya has important implications for the study of the early Islamic period in southern ‘Araba. The location of the site should perhaps not be surprising, as Khirbat al-Mana‘iyya is within 15 km of both the Timna Valley and the large smelting camp at Be‘er Ora. Its presence in south-east ‘Araba, however, contradicts previous views of settlement patterns in southern ‘Araba. The preliminary report of the Southeast ‘Araba Archaeological Survey (SAAS), for example, reported a ‘virtual absence of Early and Late Islamic period sites’ other than the major settlement at Ayla (Smith, Stevens, & Niemi, 1997: 67). While fourteen sites definitively dating to the early Islamic period are included in the final report of the survey (Smith, 2014: 160–161), the pattern that emerges seems to support the interpretations of the preliminary report. Many of the sites are described as pot-drops or ephemeral reoccupations of earlier sites, and many are
Table 2: Elemental compositions (in wt-%) of slag samples from Khirbat al-Mana‘iyya (KM), Khirbat Faynan (KF), and Khirbat Nuqayb al-Asaymir (KNA) based on averaged surface readings taken using a portable X-ray fluorescence spectrometer (pXRF). Column “n” lists the number of readings taken for each sample. The final row lists the averages of all readings taken on the five samples from Khirbat al-Mana‘iyya.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Context</th>
<th>n</th>
<th>Period</th>
<th>Type</th>
<th>K</th>
<th>Ca</th>
<th>Ba</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KM, SM1, Sq. B, B. 1, R. 35514</td>
<td>5</td>
<td>Early Islamic</td>
<td>Cu slag (slagged furnace fragment)</td>
<td>2.54 ± 0.16</td>
<td>6.43 ± 3.98</td>
<td>0.11 ± 0.24</td>
<td>0.11 ± 0.003</td>
<td>5.44 ± 1.4</td>
<td>14.39 ± 10.71</td>
<td>0.06 ± 0.01</td>
<td>0.89 ± 0.35</td>
<td>0.1 ± 0.04</td>
<td>0.01 ± 0.05</td>
</tr>
<tr>
<td>2</td>
<td>KM, SM1, Sq. B, B. 119, R. 35486</td>
<td>5</td>
<td>Early Islamic</td>
<td>Cu slag</td>
<td>2.53 ± 0.16</td>
<td>11.02 ± 3.01</td>
<td>0.02 ± 0.24</td>
<td>0.11 ± 0.004</td>
<td>6.82 ± 1.79</td>
<td>19.7 ± 11.84</td>
<td>0.05 ± 0.01</td>
<td>2.41 ± 2.81</td>
<td>0.18 ± 0.05</td>
<td>0.12 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>KM, SM1, Sq. B, B. 33, R. 35519</td>
<td>5</td>
<td>Early Islamic</td>
<td>Cu slag (slagged tuyere)</td>
<td>2.52 ± 0.15</td>
<td>3.96 ± 1.58</td>
<td>0.05 ± 0.19</td>
<td>0.11 ± 0.003</td>
<td>4.79 ± 1.44</td>
<td>10.06 ± 13.88</td>
<td>0.06 ± 0.03</td>
<td>4.49 ± 6.91</td>
<td>0.35 ± 0.14</td>
<td>0.15 ± 0.07</td>
</tr>
<tr>
<td>4</td>
<td>KM, SM1, Sq. B, B. 36</td>
<td>5</td>
<td>Early Islamic</td>
<td>Cu slag</td>
<td>2.61 ± 0.14</td>
<td>11.62 ± 4.78</td>
<td>0.42 ± 0.28</td>
<td>0.12 ± 0.004</td>
<td>7 ± 1.2</td>
<td>18.18 ± 6.53</td>
<td>0.05 ± 0.01</td>
<td>1.55 ± 0.65</td>
<td>0.15 ± 0.04</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>5</td>
<td>KM, Surface, R. 35523</td>
<td>5</td>
<td>Early Islamic</td>
<td>Cu slag</td>
<td>2.6 ± 0.17</td>
<td>9.59 ± 2.93</td>
<td>0.11 ± 0.19</td>
<td>0.11 ± 0.003</td>
<td>6.72 ± 1.72</td>
<td>15.58 ± 9.19</td>
<td>0.05 ± 0.01</td>
<td>1.88 ± 1.94</td>
<td>0.13 ± 0.04</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td>6</td>
<td>KF, Area 15, L. 5, R. 34015</td>
<td>5</td>
<td>Middle Islamic</td>
<td>Cu slag</td>
<td>2.88 ± 0.13</td>
<td>9.02 ± 1.55</td>
<td>1.36 ± 0.2</td>
<td>0.13 ± 0.003</td>
<td>21.84 ± 1.95</td>
<td>40.05 ± 4.53</td>
<td>0.05 ± 0.004</td>
<td>0.97 ± 0.37</td>
<td>0.05 ± 0.01</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>7</td>
<td>KF, Area 15, L. 10, R. 33771</td>
<td>5</td>
<td>Middle Islamic</td>
<td>Cu slag</td>
<td>2.73 ± 0.12</td>
<td>6.67 ± 1.56</td>
<td>1.11 ± 0.21</td>
<td>0.13 ± 0.003</td>
<td>14.94 ± 5.39</td>
<td>21.76 ± 10.43</td>
<td>0.03 ± 0.01</td>
<td>0.64 ± 0.25</td>
<td>0.04 ± 0.02</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>8</td>
<td>KNA, Area X, L. 163, R. 50143</td>
<td>5</td>
<td>Middle Islamic</td>
<td>Cu slag</td>
<td>2.76 ± 0.1</td>
<td>12.86 ± 6.14</td>
<td>1.13 ± 0.68</td>
<td>0.13 ± 0.01</td>
<td>21.83 ± 2.18</td>
<td>36.44 ± 2.72</td>
<td>0.04 ± 0.003</td>
<td>3.02 ± 2.21</td>
<td>0.09 ± 0.04</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>9</td>
<td>KNA, Area X, L. 167, R. 50147</td>
<td>5</td>
<td>Middle Islamic</td>
<td>Cu slag</td>
<td>2.98 ± 0.08</td>
<td>9.65 ± 1.19</td>
<td>0.83 ± 0.13</td>
<td>0.12 ± 0.002</td>
<td>17.99 ± 2.65</td>
<td>6.7 ± 1.75</td>
<td>0.07 ± 0.001</td>
<td>0.69 ± 0.31</td>
<td>0.04 ± 0.02</td>
<td>0.05 ± 0.03</td>
</tr>
<tr>
<td>KM, averages of all samples</td>
<td>25</td>
<td></td>
<td></td>
<td>2.56 ± 0.15</td>
<td>8.52 ± 4.31</td>
<td>0.11 ± 0.27</td>
<td>0.11 ± 0.004</td>
<td>6.16 ± 1.66</td>
<td>15.58 ± 10.36</td>
<td>0.05 ± 0.02</td>
<td>2.42 ± 3.4</td>
<td>0.18 ± 0.11</td>
<td>0.09 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>
close to or within the modern city of ‘Aqaba, suggesting an association with Ayla. Khirbat al-Mana’iyya is surprising because it does not conform to this pattern. It is over 25 km north-east of the Islamic period city of Ayla, and was newly established in the early Islamic period. Instead, it is a type of site that seems typical of south-west ‘Araba, where industrial settlement in the eighth–ninth century was quite common (Avner & Magness, 1998). This raises the question of how secure our knowledge of settlement in south-east ‘Araba actually is.

As Nol (2015: 53) has recently argued, the misdating of early Islamic sites to the Byzantine period—a phenomenon that scholars have noted for decades (Avner U. & Magness, 1998: 52; Whitcomb, 1992)—remains a problem in southern ‘Araba, and it is likely that many sites identified as Byzantine in surveys should in fact be placed in the early Islamic period. Indeed, this is particularly likely given that ‘all published sites excavated in the Arava since the 1990s have been dated to the Early Islamic period, even when identified as Byzantine in earlier surveys’ (Nol, 2015: 53 [our emphasis]). Khirbat al-Mana’iyya, however, brings up a second issue. Artefacts that would commonly be used for dating on a survey—particularly ceramics—are very uncommon at the site, even in excavated contexts. Although several features of the ring slag found on its surface—notably the central, cast-in hole and the prominent flow-banding—could be used to date the site, these were initially missed (see Ben-Yosef, 2012), and this dating criterion is relevant only for metallurgical sites. It is likely, given all of this, that the paucity of early Islamic sites in south-east ‘Araba is a product of the intensity of research and nature of the sites as much as or even more than it is a product of the actual number of sites.

This is also likely to be the case for the copper industry specifically. Indeed, the SAAS identified several small, undated smelting sites near Khirbat al-Mana’iyya (Smith, 2014: 217–219). None of these sites necessarily dates to the early Islamic period, but this does demonstrate that there are gaps in our understanding of the metallurgical landscape of south-east ‘Araba, even at the known sites. Beyond this, Khirbat al-Mana’iyya itself was not recorded by the SAAS. This is understandable, given that the intensity of survey in this portion of the study area was limited by both project resources and the landscape itself (Smith, 2014: 115), but again demonstrates that settlement in this region has not been completely documented. Simply put, there is much scope for future surveys and excavations in south-east ‘Araba.

7.2 The organisation of early Islamic-period copper smelting

Two of the key questions regarding any industry concern its organisation and the motivation for its establishment. While these questions are rather difficult to answer archaeologically, the spatial organisation of a copper industry can provide insight into its political-economic organisation and rationale. For example, the middle Islamic copper industry in Faynan was organised around only two sites, the largest of which was a village constructed solely for this purpose, indicating a relatively high degree of centralisation, and very likely a state-run industry (Jones et al., 2012: 90). By contrast, the early Islamic-period industry in Oman was organised around a number of small settlements, each with its own house, furnace, roasting installation, and slag mound, indicating that mining in that region was probably less organised, and copper producers more autonomous (Weisgerber, 1987: 158). The southern ‘Araba industry suggests a situation somewhere between these two. In southern ‘Araba, copper was produced in camps, and it is likely that copper producers lived in some combination of tents and the villages scattered throughout south-western ‘Araba, as discussed above (see Fig. 1). These options are by no means mutually exclusive, either, as the village of Eilat “has been suggested as a composite settlement with tents” (Whitcomb, 2006b: 35).

Two of these smelting camps—Be’er Ora and another, which no longer survives, near Umm Rashrash in the modern Israeli city of Eilat (Avner U. & Magness, 1998: 42)—were rather large, but a number of other, smaller camps are also known (U. Avner and Magness [1998: 42] list three; Nol [2015: 57, fig. 3] indicates eight camps, but does not comment on their size; Peters, Tauxe, and Ben-Yosef [in press] have identified two early Islamic-period slag mounds on the base of the hill below Timna Site 34). While Khirbat al-Mana’iyya is definitely larger than any site in the Timna Valley (Ben-Yosef, 2012: 66), its several hundred tons of slag represent a much smaller output than the 5000 tons estimated for Be’er Ora (Avner U. & Magness, 1998: 42), and as such it is a mid-sized camp for the early Islamic period.

This pattern suggests an organisation closer to the one seen in Oman, with entrepreneurs or producers setting up camps, probably organised at least partially along tribal lines. The larger camps at Be’er Ora and Umm Rashrash seem to represent the most successful examples, but Khirbat al-Mana’iyya was certainly more successful than the smaller camps in the Timna Valley.

The destination of this copper is still not entirely certain, but it seems clear that most of it would have been transported through the nearby port of Ayla (see e.g. Avner U. & Magness, 1998; Damgaard, 2009; Jones et al., 2014, in press; Nol, 2015; Whitcomb, 2006a), and from there into the Red Sea and beyond. As Power (2012: 124) has argued for the western Arabian mines, the narrower dating discussed above makes a connection to the rise of the ‘Abbasids likely. It is noteworthy here that the ‘Abbasid family
lived at the site of Humayma, in southern Jordan, prior to their ascent to power (see Schick, 2007). The nature of this connection, if it existed, is unclear, however, beyond de Jesus et al.’s (1982: 63) assertion that ‘the Abbasids were highly committed to the exploitation of copper and gold on the Arabian Shield.’ More work remains to be done, but any explanation must take account of the fact that copper mining in southern ‘Araba occurred at a much smaller scale than along the Darb Zubayda. Infrastructural improvements like the construction of qanats certainly show the investment of state resources in Wadi ‘Araba (Avni, 2014: 282–283), but this does not necessarily indicate direct state administration of the hinterland settlements of southern ‘Araba. Indeed, if Whitcomb (2006b: 41) is correct that modular village settlement in the region was economically ‘necessary and spontaneous’ due to a decrease in demand for traditional nomadic products like meat, nomadic groups may have adapted to this economic change by engaging in copper mining, and this may in turn have been encouraged or even supported by the ‘Abbasid state. The involvement of nomadic groups in the administration of copper production may also be indicated by the preference for deadwood as a fuel source, as discussed above.

8 | CONCLUSION

Our pilot season of excavations at Khirbat al-Mana’iyya conclusively demonstrates that the site dates to the early Islamic period, making it the first copper smelting site of this period known in south-east Islamic period, as the radiocarbon date published here was processed. Charcoal analysis by BL made use of the Cornell Center for Arizona Accelerator Mass Spectrometry Laboratory, where the radiocarbon date published here was processed. Charcoal analysis by BL made use of the Cornell Center for Materials Research (CCMR) Shared Facilities, which are supported through the NSF MRSEC programme (DMR-1120296); we especially thank Malcolm Thomas (CCMR) for his technical assistance with the SEM. We are grateful for the very insightful and constructive feedback provided by our two anonymous reviewers. An earlier version of this paper was much improved by comments from Sowparnika

ACKNOWLEDGEMENTS

We would like to thank the Department of Antiquities of Jordan, and in particular the Director General, Dr Monther Jamhawi, and the Director of Excavations and Surveys, Jehad Haroun, for their support of this project. The excavations described here were made possible by grants from the Kershaw and Katzin Family Foundations to TEL and Marie Curie FP7-PEOPLE-2012-CIG grant #334274 to EB-Y. Portions of IWNJ’s work were supported by the National Science Foundation under IGERT Award #DGE-0966375, “Training, Research and Education in Engineering for Cultural Heritage Diagnostics” at UC San Diego’s Center for Interdisciplinary Science in Art, Architecture and Archaeology (CISA3) at the Qualcomm Institute, and by a Palestine Exploration Fund research grant. We owe particular thanks to the Khirbat al-Mana’iyya field staff, especially Ilana Peters, Yoav Tzur, Fawwaz Ishakat, and Matthew Vincent, as well as our UC San Diego undergraduate volunteers. We must also thank Brady Liss, of the UC San Diego Levantine Archaeology Lab, for his gracious assistance with the XRF analysis. We are grateful for the support provided by the American Center of Oriental Research in Amman, Jordan, especially the Director, Dr Barbara Porter, and the former Associate Director, Dr Christopher Tuttle. We would also like to acknowledge the NSF-University of Arizona Accelerator Mass Spectrometry Laboratory, where the radiocarbon date published here was processed. Charcoal analysis by BL made use of the Cornell Center for Materials Research (CCMR) Shared Facilities, which are supported through the NSF MRSEC programme (DMR-1120296); we especially thank Malcolm Thomas (CCMR) for his technical assistance with the SEM. We are grateful for the very insightful and constructive feedback provided by our two anonymous reviewers. An earlier version of this paper was much improved by comments from Sowparnika
REFERENCES

