High-precision dendro-\(^{14}\)C dating of two cedar wood sequences from First Intermediate Period and Middle Kingdom Egypt and a small regional climate-related \(^{14}\)C divergence

Sturt W. Manning\(^a\)*, Michael W. Dee\(^b\), Eva M. Wild\(^c\), Christopher Bronk Ramsey\(^b\), Kathryn Bandy\(^d\), Pearce Paul Creasman\(^e\), Carol B. Griggs\(^a\), Charlotte L. Pearson\(^e\), Andrew J. Shortland\(^f\), Peter Steier\(^c\)

\(^a\)Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Department of Classics and Cornell Institute of Archaeology and Material Studies, 848 Goldwin Smith Hall, Cornell University, Ithaca, NY 14853–3201, USA
\(^b\)Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
\(^c\)University of Vienna, VERA Laboratory, Faculty of Physics, Isotope Research and Nuclear Physics, Währinger Straße 17, A-1090 Vienna, Austria
\(^d\)The Department of Near Eastern Languages and Civilizations, The University of Chicago, 1155 East 58th Street, Chicago, IL 60637, USA
\(^e\)Laboratory of Dendrochronology, Department of Classics and Cornell Institute of Archaeology and Material Studies, Cornell University, Ithaca, NY 14853, USA
\(^f\)Centre for Archaeological and Forensic Analysis, DEAS/CDS, Cranfield University, Shrivenham SN6 8LA, UK

Abstract

Cedar (Cedrus sp.) wood from two archaeological contexts in Egypt – (i) the First Intermediate Period coffin of Ipi-ha-ishutef, (ii) a funerary boat at the pyramid of Middle Kingdom king Senusret (or Sesostris or Senwosret) III – form floating tree-ring sequences. Since one of the sample sets had been mounted with Elmer’s glue products in core-mounts for dendrochronological examination, we investigate whether pretreatment can remove this potential contaminant before \(^{14}\)C dating. We find that even in (unrealistic) cases of extensive glue contamination this can be largely/successfully removed – making it likely that the samples in this study, where, moreover, only wood samples without traces of glue were employed, can provide accurate \(^{14}\)C dates. Dendro-\(^{14}\)C-wiggle-matching was then employed to provide precise calendar dates for the two tree-ring sequences. The last extant ring of the Ipi-ha-ishutef coffin lies ca. 2081–2064 BC (95.4% probability), supporting, but re-dating, its assumed date. In the case of the Senusret III boat, we find a temporary, small, but important offset within the period ca. 2200–1900 BC in contemporary \(^{14}\)C ages between the Levant and central and northern Europe. It is suggested this is likely a result of exaggeration of normal seasonal variations in the uptake of \(^{14}\)C and its latitudinal distribution caused by climate change in the 2200–1900 BC/4200–3900 Cal BP (y2k) interval. A date for the last extant ring of the Senusret III boat is probably around 1898/95–1879/76 BC (95.4% probability) – more consistent with a high Middle Kingdom Egyptian chronology.

1. Introduction

The general model for radiocarbon (\(^{14}\)C) analysis assumes that the mid latitudes of each hemisphere have an approximately uniform contemporary \(^{14}\)C content – allowing use of a single general Northern or Southern Hemisphere \(^{14}\)C calibration curve. Previous studies have indicated that some regional mid-latitude intra-hemisphere tropospheric offsets in contemporary \(^{14}\)C ages may, however, occur temporally associated with periods of low solar magnetic activity and general cooling (Kromer et al., 2001). The topic of possible regional offsets in \(^{14}\)C levels has also received attention with regard to several locations over the past 20 years (e.g. McCormac et al., 1995; Damon, 1995; Stuiver and Braziunas, 1998; Sakamoto et al., 2003; Hua et al., 2004; Ozaki et al., 2007; Suzuki et al., 2010; Dee et al., 2010; Manning et al., 2010, 2012). But, despite circumstantial evidence (timing), no clear link with
climate change has been established. We report analyses of two objects made of Cedar of Lebanon (Cedrus libani) from archaeological contexts in Egypt which we have closely dated via the dendro-14C-wiggle-matching of sets of tree-ring samples within the period ca. 2227–1949/40 BC (95.4% probability) – placing the last extant tree-rings for each object ca. 2081–2064 BC and 1898–1876 BC respectively. These calendar placements correlate well with the standard historical Egyptian chronology, and in one case provide support for a high Middle Kingdom chronology. Intriguingly, we also observe a small offset in the 14C data from ca. 2100 BC and changes in the 13C data that are potentially consistent with the effects of a rapid climate change to arid, cooler conditions during this time period as indicated across a wide range of regional climate proxies for the period ca. 2200–1900 BC or 4200–3900 BP (y2k) (e.g. Weiss et al., 1993; Staubwasser and Weiss, 2006: 380–383; Weiss et al., 2012: 185–187; Weiss, 2014; Salzer et al., 2014). These findings are relevant to the possible use of 14C as a regional climate tracer, and are of importance to archaeological chronologies employing 14C on samples from the east Mediterranean during such periods of climate change.

2. Materials and methods

2.1. Cedar wood from Egypt

(i) Cedar wood coffin of Iphi-ha-ishutef. The material from the coffin of Iphi-ha-ishutef comprises 10 cores collected in May 1938 AD, drilled at the request of A.E. Douglass by the Oriental Institute, Chicago (EGY-3 to EGY-12, University of Arizona = CHI-3 to CHI-12 in the Cornell records). Correspondence between Douglass and OI director John A. Wilson regarding the specimens is on file at the University of Arizona, and includes the precise location of each core from the coffin (see Supplementary Figs. S1–S3). Subsequent research by J.A. Larson, the Oriental Museum Archivist, confirmed the coffin sampled as that of Iphi-ha-ishutef. This coffin is believed to have been recovered near the pyramid of King Teti at Saqqara; Iphi-ha-ishutef’s title was “Scribe and Overseer of the Expedition [or Army]”. The Oriental Institute Museum lists the following basic information on the coffin: First Intermediate Period, Dynasty 9–10, ca. 2213–2035 BC, Wood, carved and painted, 63.5 cm h, 202.0 cm W, Purchased in Cairo, 1923, OIM 12072 (see Mertz, 1964: plate facing p.97). To date it has not been fully published (a current project of one of us: KB). However, it has been included in studies on Middle Kingdom coffin typologies (Lapp, 1993: coffin Sq11; Willems, 1988: coffin Sq1Ch) and Middle Kingdom copies of the Pyramid Texts (Allen, 2006: coffin Sq1Ch). The dating of the Saqqara coffins is very loose due to the limited number of securely dated burials. Compounding this problem is the limited nature of published archaeological data. As a result, the burials at Saqqara have largely been dated by associated grave goods, along with various philological and art historical criteria. Unlike in Middle Egypt, observed typological developments in the Memphite area are more restricted. Two primary studies on Middle Kingdom coffins (cited above) have established broad typological groups, but chronological relationship(s) between them remain uncertain. As a result, the coffin is generally dated as late First Intermediate Period/early Middle Kingdom (Dynasty 11/early Dynasty 12), with the caveat that all of the dating in the Memphite area is fluid.

(ii) A boat found at the pyramid complex of Senusret (or Sesostris/Seswosret) III (reign ca.1872–1853 BC: Kitchen, 2000, 1837–1819 BC: Hornung et al., 2006). In 1894 Jean-Jacques De Morgan discovered a series of small boats (or barques) at the pyramid complex of king Senusret III at Dahshur (De Morgan, 1895; see generally Ward, 2000: 83–102). The exact number of boats discovered by De Morgan and their precise location has been the subject of some debate, kindled by contradictions in his own reports (Creasman et al., 2010: 516–517). It is apparent, however, that the boats were found in two clusters, the first of which consisted of three burials just beyond the south temenos wall of the pyramid. The second group comprised up to another three vessels approximately 100 m farther to the south (Haldane, 1984a; Creasman et al., 2009). De Morgan excavated all three boats from the first group, two of which ended up in the Egyptian Museum, Cairo (identified as objects CG 4925 and 4926: Creasman, 2005, 2010a). A third boat found its way to Chicago’s Field Museum of Natural History (material from this boat was employed by Libby as a source of ‘known-age’ material in his early 14C work: Arnold and Libby, 1949). Few records remain about the excavation of the remaining boats, although it is apparent that one was transported to the United States and purchased by philanthropist Andrew Carnegie for his eponymous Museum of Natural History in Pittsburgh (Haldane, 1984b: Patch and Haldane, 1990). The material comes from sampling by Peter Ian Kuniholm in 1888 from this boat (which was disassembled and in storage since 1975). In recent times, an American team has employed ground penetrating radar at Dahshur in the hope of finding the missing boat(s), assuming indeed it ever existed (Creasman et al., 2010).

The cedar wood in each case did not originate from (grow in) Egypt, where it is not native and growth conditions are not suitable. Finds in Egypt represent an early example of timber trade (Kuniholm et al., 2007; Creasman, 2014a). C. libani A. Rich occurs only in the northeast Mediterranean, and is found today principally in small areas in the Taurus Mountains of southern Turkey and in the coastal mountains of Cilicia (and a few other scattered areas of Turkey including in the Black Sea region: Boydak, 2003: 232 and refs., Fig. 2; Akkemik, 2003), Syria, and Lebanon, and a subspecies, C. libani subsp. brevfolia (Hook.f). Meikle (also e.g. C. libani var. brevfolia Hook.f.), is found in a small area of western Cyprus (Hajar et al., 2010; Quézel and Médail, 2003). Strontium (Sr) analysis may offer a route to source finds of cedar wood between some of these areas (Rich et al., 2012). Sr analysis indicates a most likely origin for the Senusret III boat cedar timbers in Lebanon (Rich, 2013: 152–154).

Applying standard dendrochronological methods (Cook and Kairiukstis, 1990; Schweingruber, 1997), with crossdating and data quality checked using the program COFECHA (Holmes, 1983; Grissino-Mayer, 2001), a 151-year crossdated tree-ring sequence can tentatively be constructed in relative time from seven of the cedar cores from the Iphi-ha-ishutef coffin (CHI-3, 4, 5, 6, 7, 8 and 11). The one major uncertainty exists with the interval from relative ring 1081–1083 in the CHI-3 core as extant. Here it seems likely that 5 missing rings should be inserted (4 after original ring 1081 and one after original ring 1082). ‘Missing rings’ or rings which are valid indications of a single growth year but cannot be observed around the entire cross-section of the tree are a frequent occurrence for C. libani and especially problematic where the dendrochronological samples taken (as in our case) only represent a small part of the entire cross-section of the trunk. There is therefore reasonable justification that rings present in the original tree were...
not present in the location the core was taken. The statistics for
cross-dating are improved by the insertion of the rings (the series
intercorrelation in COFECHA goes up from 0.543 and one 8 flag to
0.567 and no flags: see Table 1), as is the visual match for the
growth pattern of the wood. We use this as the preferred chro-
nology: Fig. 1. The chronology is by no means certain, but is
reasonable given the evidence available.

A 337-year tree-ring sequence can tentatively be constructed
from among the set of samples from the Pittsburgh boat, using
eight samples (two with measurements on different sub-samples,
PIT-6A and 6B, PIT-12A and 12C): Table 2 and Fig. 2a and b. Some
eight samples (two with measurements on different sub-samples,
and the beginning of PIT-12C was also truncated (first 61 rings
excluded), and likely missing (locally absent) rings (mr) were
added to PIT-12C, PIT-26A and PIT-27A. The PIT-6AB sample
(combining measurements on PIT-6A and 6B) forms the core of
the chronology crossdating with PIT-1A, 3A, 21A, 26A, and 27A
and tentatively with 18A. The latest part of the chronology is
represented by PIT-18A, which crossdates with PIT-12A (and
tentatively with PIT-6AB), which in turn crossdates with PIT-26A
and 27A, and these with PIT-6AB. When sampled, possible bark/
bark-edge was observed in the area where PIT-12 was drilled,
however, the extent core (ending at relative ring 1292) does not
include bark or sapwood. Thus, assuming the original observation
was correct, it seems probable that a number of outermost rings
were lost during coring.

Sample material for δ13C and 14C measurements was dissected
using a steel blade under a stereo microscope to provide 11 decadal
segments of CHI-3 (as indicated in Fig. 1) and 12 decadal samples,
one 6-year sample and one 4-year sample of PIT-6B for the Oxford
Radiocarbon Accelerator Unit (OxA), and 20 decadal samples and
one 11-year sample of PIT-6A for the Vienna Environmental
Research Accelerator (VERA) laboratory (as indicated in Fig. 2a). The
samples are listed in Tables 3–5.

2.2. Elmer’s Wood Glue test

The core samples from the Pittsburgh boat, including PIT-6A
and PIT-6B which were employed in analyses reported below,
were kept in standard dendrochronological core-mounts. One
drawback of this (standard) practice is that parts of the core
were exposed to Elmer’s Wood Glue™ or Elmer’s Glue-All™, polyvinyl
acetate adhesives. Previous analyses at ORAU had suggested such
contamination was removed when a solvent extraction was

Table 1

<table>
<thead>
<tr>
<th>Sequence</th>
<th>CHI-3mr RY1001-1123</th>
<th>CHI-4 RY1024-1134</th>
<th>CHI-5 RY1059-1151</th>
<th>CHI-6 RY1035-1106</th>
<th>CHI-7 RY1039-1103</th>
<th>CHI-8 RY1035-1116</th>
<th>CHI-11 RY1034-1099</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI-4</td>
<td>t = 7.5 (5.3)</td>
<td>r = 0.61 (0.48)</td>
<td>t = 7.7</td>
<td>t = 6.6</td>
<td>r = 0.64</td>
<td>t = 10.7</td>
<td>r = 0.8</td>
</tr>
<tr>
<td>CHI-5</td>
<td>r = 4.7 (0.53)</td>
<td>r = 0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI-6</td>
<td>t = 2.8 (nv)</td>
<td>r = 0.32 (nv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI-7</td>
<td>t = 2.8 (nv)</td>
<td>t = 2.5</td>
<td>r = 0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI-8</td>
<td>t = 2.8 (nv)</td>
<td>t = 2.9</td>
<td>r = 0.31</td>
<td>r = 0.7</td>
<td>t = 10.7</td>
<td>r = 0.8</td>
<td></td>
</tr>
<tr>
<td>CHI-11</td>
<td>t = 2.2 (nv)</td>
<td>r = 0.27 (nv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
evenly selected. To remove any non-polar contamination, the samples were then solvent washed as follows: acetone (45 °C, 45 min); methanol (45 °C, 45 min) and chloroform (RT, 45 min). After being left to dry overnight, the samples were then subjected to the Oxford Radiocarbon Accelerator Unit’s routine aqueous pretreatment procedure for wood (Brock et al., 2010). The key steps of the procedure are as follows: HCl (1 M, 80 °C); NaOH (0.2 M, 80 °C); HCl (1 M, 80 °C) and NaOCl2 (5% w:vol, 80 °C). The extracted holocellulose was then freeze-dried, and approximately 5 mg quantities weighed into tin capsules for combustion in an elemental analyser coupled to a mass spectrometer. The CO2 liberated was collected cryogenically, graphitised and dated at ORAU’s accelerator mass spectrometer (AMS) facility (see Bronk Ramsey et al., 2004).

The control samples from Greece were treated in exactly the same manner, except that subsamples D-F were pretreated in duplicate (D1-F1, and D2-F2), with only the first subsample (D1-F1) receiving a solvent wash. This was to make sure that no solvent had remained that could affect the final date.

2.4. Laboratory procedures — Vienna Environmental Research Accelerator — VERA

From the Çatak tree-ring samples slices of wood (~150 mg) including all 10 tree-rings were cut with a saw. One of the two large planes of the section thus obtained was covered with a layer of Elmer’s Glue-All®. After allowing for hardening for several days the sample was treated with boiling H2O distilled over 3 days and a large part of the glue was removed in flakes from the sample surface. Subsequent to the H2O treatment the sample was chopped up and the different pretreatments listed in Table 4 were applied to the Çatak test samples. The individual chemical steps combined in these pretreatment tests are described in the Supporting Online Materials in Bronk Ramsey et al. (2010).

The pretreatment for the PIT samples was selected on the basis of these Elmer’s Glue-All® tests (see below for discussion). As a result, all the PIT samples (starting amounts between ~50 mg and ~35 mg, obtained like the test samples), except VERA-3130, have been treated consecutively with hot H2Odistilled, Soxhlet extraction with acetone, methanol and H2Odistilled. In sequence, the VERA standard ABA method (Wild et al., 2008) and then bleaching with NaClO2. From VERA-3130 only a 16 mg sample amount was available, therefore to minimise sample losses the final bleaching step was omitted.

After the chemical pretreatment, 5 mg—10 mg of the samples were further processed as described for example in Wild et al. (2008). The 14C measurement was performed with the AMS system of the VERA laboratory (Steier et al., 2004). 13C/12C isotope ratios were also determined via AMS measurement in the graphitised sample for isotope fractionation correction of the 14C data. Separate high-precision δ13C analyses were not performed on the PIT samples at VERA. To test the reproducibility of the applied sampling and the pretreatment method for the PIT samples, a second independent 14C age determination was performed for those samples where a larger quantity of initial material was available (10 out of 21 samples).

3. Results

3.1. Removal of Elmer’s Wood Glue™ and Elmer’s Glue-All®

The conventional radiocarbon ages (CRAs) of the samples testing the dating effect of Elmer’s Wood Glue™ and Elmer’s Glue-All®, are listed in Tables 6 and 7. The Oxford results on the known age control sample clearly show that Elmer’s Wood Glue™ was labile to solvent pretreatment. If any adhesive had remained, the CRAs of the corresponding samples would have been higher than expected, as the polymer is a product of the petrochemical industry and hence depleted in 14C. As shown in Fig. 3, the measurements obtained on the control samples were similar to the reference values for this period of time (AD 1641–1650). If anything, the highest measurements were obtained on values that had neither been exposed to the adhesive nor the solvents, which were also 14C-free (see Fig. 3). There is thus no evidence that the samples treated with Elmer’s Wood Glue™ yielded inappropriately old 14C ages and no evidence that any old carbon contaminant applies after pretreatment.

The Vienna results on the known age control sample also indicate that the samples which had been exposed to Elmer’s Glue-All® returned acceptable results under several slightly different pretreatment regimes, with all dates but one (VERA-2754TS) similar to the reference values for this period (Fig. 4), and all but VERA-2754TS including the expected calendar age range within their most likely 68.2% ranges when calibrated (using OxCal 4.2, Bronk Ramsey, 1995; 2009a; IntCal13, Reimer et al., 2013). However, at
the same time, on average, it is apparent that the VERA 14C ages on the samples treated with Elmer’s Glue-All® are very slightly older (weighted average 293 ± 13 14C years BP, taking into account correlated uncertainties) versus those dates measured at VERA with no Elmer’s Glue-All® (weighted average 250 ± 13 14C years BP), suggesting either some small contaminant effect; or, more likely since the dates correspond well with the IntCal reference curve and the range of the Oxford dates on a tree-ring block only offset by 1 year, a slight change in the performance of the VERA AMS between 2003 when the control samples were run and 2012 when the other data were run. Based on this test, it was decided to adopt the pretreatment regime described in Section 2.4 above for the PIT samples run at VERA as most likely to remove or minimize any Elmer’s Glue-All® contaminant issue.

These tests on the pretreatment and dating of known age wood treated with Elmer’s Wood Glue® or Elmer’s Glue-All® provide evidence of the integrity of the resultant 14C and 13C measurements following appropriate pretreatment, and their suitability for high-precision analysis. It should further be noted that the test samples reviewed above were liberally coated in Elmer’s Wood Glue® or Elmer’s Glue-All®, whereas only minimal amounts were ever applied to the PIT cores, and the material sampled for analysis avoided any wood where adhesive traces were visible. Thus any potential issue is inherently unlikely.

3.2. Dating the coffin of Ipi-ha-ishutef

The set of dendro-sequenced 14C dates along the CHI-3 core (Table 3) can be closely dated in calendar years employing the technique of dendro-14C-wiggle-matching (Bronk Ramsey et al., 2001; Galimberti et al., 2004; Bayliss and Tyers, 2004; Tyers, 2008), using OxCal (Bronk Ramsey, 1995; 2009a) and the IntCal13 (Reimer et al., 2013) 14C calibration curve: Fig. 5. The data fit well to the calibration curve (no outliers applying the simple or general outlier models of Bronk Ramsey, 2009b). There is no indication of a 14C offset — a ΔR test indicates effectively a zero offset: Fig. 5 (bottom left). The sequence of dated wood segments from the CHI-3 sample is placed applying the dating model with the midpoint of the first 10-year sample at 2222–2213 BC at 68.2% probability (2222–2209 BC at 95.4% probability) and the mid-point of the last sample at 2117–2108 BC at 68.2% probability (2122–2104 BC at 95.4% probability). The last extant tree-ring in the CHI chronology (40.5 years after the mid-point of the last dated decade) lies 2076–2068 BC at 68.2% probability (2081–2064 BC at 95.4% probability). No bark or other indications of terminal rings are present, thus this date is a terminus post quem by an unknown amount. This date is consistent with the general calendar date

Table 3

<table>
<thead>
<tr>
<th>OxA-</th>
<th>Species</th>
<th>Adhesive</th>
<th>Tree-ring nos.</th>
<th>Rings between sample centres</th>
<th>14C Date Years BP</th>
<th>SD</th>
<th>13C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14631</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>994–1003 – 1021–1030</td>
<td>10</td>
<td>3752</td>
<td>30</td>
<td>−20.4</td>
</tr>
<tr>
<td>14632</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1004–1013 – 1031–1040</td>
<td>10</td>
<td>3688</td>
<td>33</td>
<td>−19.8</td>
</tr>
<tr>
<td>14633</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1014–1023 – 1041–1050</td>
<td>10</td>
<td>3746</td>
<td>30</td>
<td>−19.6</td>
</tr>
<tr>
<td>14634</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1024–1033 – 1051–1060</td>
<td>10</td>
<td>3793</td>
<td>31</td>
<td>−19.8</td>
</tr>
<tr>
<td>14635</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1034–1043 – 1061–1070</td>
<td>10</td>
<td>3772</td>
<td>30</td>
<td>−20.2</td>
</tr>
<tr>
<td>14636</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1044–1053 – 1071–1080</td>
<td>10</td>
<td>3747</td>
<td>30</td>
<td>−20.0</td>
</tr>
<tr>
<td>14637</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1054–1063 – 1081–1095</td>
<td>12.5</td>
<td>3743</td>
<td>30</td>
<td>−19.9</td>
</tr>
<tr>
<td>14639</td>
<td>Cedrus sp.</td>
<td>Y</td>
<td>1074–1083 – 1106–1115</td>
<td>10</td>
<td>3649</td>
<td>32</td>
<td>−20.0</td>
</tr>
</tbody>
</table>
range applied for this coffin on the basis of style and associations in the First Intermediate Period, Dynasties 9–10, or early Middle Kingdom, Dynasty 11, and would indicate that it is likely the coffin laboratories dated the identical (or almost identical) sets of tree-rings (n = 9) the results are all consistent with being estimates of the same real 14C age within 95.4% probability limits (Ward and Wilson, 1978) – Table 8 – and indeed all but one set overlap even within their 1σ ranges (note: the VERA samples for rings 1201–1211 includes one extra ring, 1211, compared to the Oxford sample for rings 1201–1210). Out of the set of instances of multiple measurements on the identical or almost identical tree-rings (n = 18) only one pair – two VERA measurements on rings 1061–1070 – narrowly fail to meet this test (t = 3.809 > 5% value of 3.8). We have therefore treated the Oxford and Vienna data as one set for the purposes of a dendro-14C-wiggle-match analysis to provide a best date in calendar years for the wood from the Pittsburgh boat: Fig. 7. The last extant (and non-terminal) tree-ring in the PIT chronology is ring 1306 (from PIT-18A). Thus the minimum felling date (+1 year) for this timber provides us with a best estimate terminus post quem date only – we do not know how many rings are missing to bark and it could be some to many – for the Senusret III boat (Fig. 7B): 1896–1889 BC at 68.2% probability and 1898–1885 BC at 95.4% probability.

However, it is evident from Fig. 7A that the 14C dates from about 2123 BC and especially ca. 2080 BC and later tend mainly to be above, that is older than, the IntCal13 values. A neutral ΔR test running the whole PIT dating model, using a test value of 0 ± 20,
on average, the highest dates. Samples that had not been exposed to either Elmer’s Glue-All® (in italics) versus those treated with Elmer’s Glue-All® under differing pretreatment strategies. The VERA-2753 and VERA-2754... samples are all using the identical tree-rings, with the samples with the suffixes T... treated with Elmer’s Glue-All® and then variously pretreated as summarised above. The samples marked with an * were pretreated in a manner similar to VERA-2754T6 but with the second acid step skipped. VERA-2751, 2752 and 2755 were also run on the same tree-rings (no Elmer’s Glue-All®) and are shown for comparison. The same tree-rings were also dated at the Heidelberg Radiocarbon Laboratory (no Elmer’s Glue-All®) and again this date, Hd-19597, is listed for comparison (from Manning et al., 2010, 2006). The VERA 13C dates listed above are corrected for isotopic fractionation using the δ13C values measured in the AMS (quoted with 13C measurement uncertainties). VERA-2751, 2752, 2753, 2754 and 2755 and Hd-19597 were previously reported in Manning et al. (2006). VERA data are rounded off according to the recommendations of Stuiver and Polach (1977).

Table 7

<table>
<thead>
<tr>
<th>Lab no.</th>
<th>Species</th>
<th>Adhesive</th>
<th>Pretreatment summary</th>
<th>δ13C ‰</th>
<th>14C Date Years BP</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERA-2753 measured in 2003</td>
<td>Pinus nigra</td>
<td>N</td>
<td>soaked in Acetone + ABA sample not treated with Elmer’s Glue-All®</td>
<td>−22.1 ± 0.5</td>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2753T1</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) cellulose</td>
<td>−19.8 ± 1.2</td>
<td>280</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2753T2</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O)</td>
<td>−16.5 ± 2.6</td>
<td>305</td>
<td>40</td>
</tr>
<tr>
<td>VERA-2753T3</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) cellulose</td>
<td>−20.6 ± 0.7</td>
<td>290</td>
<td>35</td>
</tr>
<tr>
<td>VERA-2753T4</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) AB + bleaching with NaClO2*</td>
<td>−19.6 ± 1.7</td>
<td>305</td>
<td>35</td>
</tr>
<tr>
<td>VERA-2753T5</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O)</td>
<td>−19.3 ± 1.1</td>
<td>295</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2753T6</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) AB + bleaching with NaClO2*</td>
<td>−21.1 ± 0.5</td>
<td>265</td>
<td>35</td>
</tr>
<tr>
<td>VERA-2754 measured in 2003</td>
<td>Pinus nigra</td>
<td>N</td>
<td>soaked in Acetone + ABA sample not treated with Elmer’s Glue-All®</td>
<td>−22.4 ± 0.7</td>
<td>260</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2754T3</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) cellulose</td>
<td>−22.4 ± 0.7</td>
<td>295</td>
<td>25</td>
</tr>
<tr>
<td>VERA-2754T4</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O)</td>
<td>−21.5 ± 0.7</td>
<td>260</td>
<td>25</td>
</tr>
<tr>
<td>VERA-2754T5</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Cyclohexan/EDOH–EOH–H2O)</td>
<td>−23.4 ± 0.7</td>
<td>335</td>
<td>25</td>
</tr>
<tr>
<td>VERA-2754T6</td>
<td>Pinus nigra</td>
<td>Y</td>
<td>H2O + Soxhlet (Acetone-MeOH-H2O) ABA bleaching</td>
<td>−22.7 ± 0.7</td>
<td>265</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2751 measured in 2003</td>
<td>Pinus nigra</td>
<td>N</td>
<td>soaked in Acetone + ABA sample not treated with Elmer’s Glue-All®</td>
<td>−22.1 ± 0.7</td>
<td>225</td>
<td>30</td>
</tr>
<tr>
<td>VERA-2752 measured in 2003</td>
<td>Pinus nigra</td>
<td>N</td>
<td>soaked in Acetone + ABA sample not treated with Elmer’s Glue-All®</td>
<td>−21.5 ± 0.6</td>
<td>270</td>
<td>35</td>
</tr>
<tr>
<td>VERA-2755 measured in 2003</td>
<td>Pinus nigra</td>
<td>N</td>
<td>soaked in Acetone + ABA sample not treated with Elmer’s Glue-All®</td>
<td>−23.7 ± 0.5</td>
<td>245</td>
<td>30</td>
</tr>
<tr>
<td>Hd-19597</td>
<td>Pinus nigra</td>
<td>N</td>
<td>Modified de Vries (AAA, or ABA) sequence with NaOH overnight; HCl, NaOH, and HCl bleaching with NaClO2*</td>
<td>−23.6 ± 0.5</td>
<td>246</td>
<td>13</td>
</tr>
</tbody>
</table>

Fig. 3. The Conventional Radiocarbon Ages (CRAs) of the Elmer’s Wood Glue™ test at the Oxford Radiocarbon Accelerator Unit on known age control samples of pine from Greece with their 1σ measurement uncertainties (see Table 6). The dashed lines indicate the northern hemisphere calibration curve central (no uncertainties included) values (IntCal13, Reimer et al., 2013) for the two outermost rings of these known age samples (linear annual interpolation where relevant between IntCal data points). The samples that had not been exposed to either Elmer’s Wood Glue™ or solvent returned, on average, the highest dates.

Fig. 4. The CRAs of the Elmer’s Glue-All® test at the Vienna Environmental Research Accelerator on known age control samples of pine from Turkey with their 1σ measurement uncertainties (see Table 7). The dashed lines indicate the northern hemisphere calibration curve central (no uncertainties included) values (IntCal13, Reimer et al., 2013) for the two outermost rings of these known age samples (linear annual interpolation where relevant between IntCal data points).
indicates an apparent and substantive offset of around 1714C years:

Fig. 7C (using the mid-point of the 68.2% range). Repeated runs indicate an average most likely 68.2% probability value around 17/6^14C years (in rounded terms). The placement of the PIT-6 wiggle-match series in calendar time is, however, only slightly affected, moving the minimum felling date TPQ on typical runs just a few years later to e.g. 1892±1884 BC at 68.2% probability and 1896±1879 BC at 95.4% probability (note repeated different runs get 0±3 year variations in some cases, to ca. 1876 BC). The quality of the fit is much improved, however, by allowing either a 0±20 14C years or 17±6 14C years offset, with, for example, the OxCal overall statistic improving from around 42.9 with no ΔR, to around 100.5 with ΔR 0±20 to around 135.8 with ΔR 17±6. Fig. 8 shows the combined placements of both the CHI-3 and PIT-6 14C data against IntCal13 for the contemporary year (employing 1 year linear interpolation where necessary). The least squares linear fit line through the difference data in the lower part of Fig. 8 clearly shows the trend towards an offset as one moves through the series.

This tendency towards slightly older 14C ages from the later part of the PIT sequence is evident in both the Vienna and Oxford datasets, even though it is more pronounced in the Oxford set which overall comprises slightly older 14C ages for the same (or almost the same) tree-ring years: Table 8. Fig. 9A shows the fit of just the VERA data against IntCal13, and it is evident from about the date placed ca. 2117 BC, and certainly from the date placed ca.

Fig. 5. Main panel: 14C-wiggle-match best fit of the 11 dendro sequenced 14C dates on the CHI-3 sample (Table 3) against the IntCal13 14C calibration curve (Reimer et al., 2013) employing OxCal (Bronk Ramsey, 1995, 2009a) — the grey bars for each date illustrate the 1σ uncertainties in both the 14C and calendar timescales. Top right: the modelled calendar date of the last extant tree-ring of the overall CHI chronology (as shown in Fig. 1). Bottom left: a re-run of the wiggle-match testing for a possible 14C offset allowing for a ΔR of 0±20 14C years — almost no offset is evident with the distribution centred close to zero. A very small possibility (3.2%) for a substantive offset (36.2±49.9 14C years) can be dismissed as an artifact of the wiggly calibration curve shape at this period.

Fig. 6. Comparison of the 14C dates on the PIT-6A (VERA) and PIT-6B (OxA) samples (Tables 4 and 5). See also Table 8. 1σ uncertainties shown. All samples on the same or almost the same years measured at both Vienna and Oxford offer age estimates which are consistent with the hypothesis of representing estimates of the same 14C age at 95.4% probability (Ward and Wilson, 1978); one pair of dates on the same sample both run at VERA (relative years 1062–1071) narrowly fails such a test (t = 3.869 > 3.8 for chi-squared test at df1). Note the VERA sample for rings 1201–1211 includes one more ring (1211) than the Oxford sample (rings 1201–1210).
Table 8
Comparison of the Oxford and Vienna \(^{14}\)C data on the same or almost the same tree-rings (see also Fig. 6). In each case the data can reasonably be combined as estimates of the same \(^{14}\)C age (Ward and Wilson, 1978). The OxA data are, however, overall slightly older than the VERA data across the comparison set (mean \(= 14 \pm 16\) \(^{14}\)C years). However, as discussed in the text and see Fig. 9 (compared to Fig. 7), the \(^{14}\)C offset from around 2100 BC onwards in the PIT data is evident, regardless, in both the VERA and OxA data, and thus appears to be real.

<table>
<thead>
<tr>
<th>Relative yr.</th>
<th>Oxford (^{14})C Date</th>
<th>Vienna (^{14})C Date</th>
<th>Offset</th>
<th>Ward & Wilson test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1121–1130</td>
<td>20125 3759 (29) 3128 & 3128,2</td>
<td>3733 28</td>
<td>+26 40</td>
<td>3746 20 0.4 Pass</td>
</tr>
<tr>
<td>1131–1140</td>
<td>20134 3747 26 3129</td>
<td>3747 35</td>
<td>+0 44</td>
<td>3747 21 0.0 Pass</td>
</tr>
<tr>
<td>1141–1150</td>
<td>20135 3687 26 3130</td>
<td>3694 35</td>
<td>–7 44</td>
<td>3689 21 0.0 Pass</td>
</tr>
<tr>
<td>1151–1160</td>
<td>20136 & 20137 3733 22 3131</td>
<td>3725 39</td>
<td>+8 45</td>
<td>3731 19 0.0 Pass</td>
</tr>
<tr>
<td>1161–1170</td>
<td>20138 3657 27 3132</td>
<td>3679 37</td>
<td>–22 46</td>
<td>3665 22 0.2 Pass</td>
</tr>
<tr>
<td>1171–1180</td>
<td>20139 3702 28 3133</td>
<td>3618 35</td>
<td>+84 45</td>
<td>3669 22 3.5 Pass</td>
</tr>
<tr>
<td>1181–1190</td>
<td>20140 3674 29 3134</td>
<td>3627 37</td>
<td>+47 47</td>
<td>3656 23 1.0 Pass</td>
</tr>
<tr>
<td>1191–1200</td>
<td>20141 3675 29 3135</td>
<td>3698 39</td>
<td>–23 49</td>
<td>3683 23 0.2 Pass</td>
</tr>
<tr>
<td>1201–1210/11 20142 3678 30 3136</td>
<td>3671 38</td>
<td>+7 48</td>
<td>3675 24 0.0 Pass</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion
4.1. Dating
Kuniholm (2001:79–81) reported provisional calendar dates of 2430–2286 BC for the overall CHI dendrochronology and 2439–2104 BC for the overall PIT dendrochronology based on supposed cross-dating placements against a number of unpublished chronologies linked to the Anatolian Middle Bronze Age-Iron Age juniper chronology as dated in Kuniholm et al. (1996). The dendro-\(^{14}\)C-wiggle-matches reported above render both these date placements highly unlikely. We find a good date placement for the CHI chronology ending about 2076–2068 BC (68.2% probability) and 2081–2064 BC (95.4% probability), more than 200 years later than the Kuniholm placement. We find that the chronology from the Senusret III boat also ends in the early 19th century BC (ca.1898–1876 BC at the limits of the 95.4% ranges whether with or without allowing for the apparent \(^{14}\)C offset, \(\Delta R\) either of 0 \(\pm 20\), 17 \(\pm 6\) or, see Section 4.2 below, 21 \(\pm 7\) \(^{14}\)C years), again more than 200 years later than the Kuniholm placement. Our findings indicate that these samples should not—contrary Kuniholm (2001)—be associated with the Anatolian juniper chronology.

Part of the issue with the previous dendrochronological work has already been addressed. The core Gordion juniper chronology running from the 17th through 8th centuries BC, has been constructed twice, independently, by two different methods (first by skeleton plotting at Arizona, and then independently using ring-width comparisons by Kuniholm: see Kuniholm et al., 2011: 80–82), and so can be regarded as sound. There are substantial numbers of samples of the same tree type (Juniperus spp.) from a similar area which crossdate well (e.g. Kuniholm et al., 2011: Table 5.6; Manning et al., 2010; Tables 2 and 3), and a highly detailed \(^{14}\)C wiggle-match investigation employing 128 \(^{14}\)C dates over almost a millennium provides further independent confirmation that this chronology is well constructed and placed in time. The date for this sequence is now placed some 22 to 23 \(\pm 1\) years earlier than in Kuniholm et al. (1996), as set out in Manning et al. (2001, 2003; 2010). The remainder of the difference for the earlier dendrochronological placement (Kuniholm, 2001) may be explained by a variety of problems (as in some previous cases of problems with Kuniholm’s work: e.g. Griggs and Manning, 2009; Manning et al., 2009), such as site sequences constructed from relatively small numbers of samples, less than sufficient overlaps both within the respective site chronologies and between the site chronologies, and use of different species from widely spaced areas from diverse elevations and growth contexts (from northwest
There is no reason to expect all or any of these trees to exhibit close similarities in growth patterns. The PIT chronology ends at relative year 1306, and there is no bark or other indication of a terminal ring. Thus the minimum felling date for the relevant timber (\(\text{\(\pm\)} 1\text{ year}\)) is merely a terminus post quem (TPQ), and the actual felling date was another few–several years later (unknown amount). It is also evident that there is a \(^{14}\text{C}\) offset applying over most of the period of the PIT \(^{14}\text{C}\) time-series. Allowing for this yields very slightly later modelled calendar age ranges for the minimum felling date TPQ (compared to Fig. 7B):

(a) allowing for a \(\Delta R\) test range of \(0 \pm 20\text{ }^{14}\text{C}\) years: 1892–1884 BC at 68.2% probability and 1896–1879 BC at 95.4% probability (with about a \(0\text{–}3\text{ year}\) variation on the 95.4% ranges over multiple runs);

(b) allowing for an estimated PIT-relevant \(\Delta R\) of \(17 \pm 6\text{ }^{14}\text{C}\) years (from repeated runs of the \(0 \pm 20\text{ }\Delta R\) model): 1892–1884 BC at 68.2% probability and 1895–1879 BC at 95.4% probability. (Note: very similar age ranges usually result when a \(\Delta R\) of \(21 \pm 7\text{ }^{14}\text{C}\) years is employed — see below for this figure.)

If we compare the PIT minimum felling dates with the calendar date ranges calculated from \(^{14}\text{C}\) and historical reign length information (Bronk Ramsey et al., 2010; Dee, 2013), or from historical-astronomical information alone (e.g. Huber, 2011; Gautschy, 2011a; 2011b; Kitchen, 2000; Hornung et al., 2006), for Senusret III and his successor Amenemhat III, we see that the minimum

Fig. 7. A: \(^{14}\text{C}\)-wiggle-match best fit of the dendro sequenced \(^{14}\text{C}\) dates on the PIT-6 sample (Tables 4 and 5) against the IntCal13 \(^{14}\text{C}\) calibration curve (Reimer et al., 2013) employing OxCal (Bronk Ramsey, 1995, 2009a) — the grey bars for each date illustrate the 1\(\sigma\) uncertainties in both the \(^{14}\text{C}\) and calendar timescales. B: the modelled calendar date of the minimum felling date for the last extant tree-ring of the overall PIT chronology (as shown in Fig. 2a). C: a re-run of the wiggle-match testing for a possible \(^{14}\text{C}\) offset allowing for a \(\Delta R\) of \(0 \pm 20\text{ }^{14}\text{C}\) years — a noticeable offset is evident (as visually apparent looking at most of the dates from ca. 2123 BC and later, and certainly ca. 2080 BC and later), with multiple runs of the model typically finding a \(\Delta R\) of (mid-point of the 68.2% ranges) ca. \(17\text{ }^{14}\text{C}\) years.

Anatolia to the Levant in the case of Kuniholm, 2001). There is no reason to expect all or any of these trees to exhibit close similarities in growth patterns.

The PIT chronology ends at relative year 1306, and there is no bark or other indication of a terminal ring. Thus the minimum felling date for the relevant timber (\(\pm 1\text{ year}\)) is merely a terminus post quem (TPQ), and the actual felling date was another few–several years later (unknown amount). It is also evident that there is a \(^{14}\text{C}\) offset applying over most of the period of the PIT \(^{14}\text{C}\) time-series. Allowing for this yields very slightly later modelled calendar age ranges for the minimum felling date TPQ (compared to Fig. 7B):

(a) allowing for a \(\Delta R\) test range of \(0 \pm 20\text{ }^{14}\text{C}\) years: 1892–1884 BC at 68.2% probability and 1896–1879 BC at 95.4% probability (with about a \(0\text{–}3\text{ year}\) variation on the 95.4% ranges over multiple runs);

(b) allowing for an estimated PIT-relevant \(\Delta R\) of \(17 \pm 6\text{ }^{14}\text{C}\) years (from repeated runs of the \(0 \pm 20\text{ }\Delta R\) model): 1892–1884 BC at 68.2% probability and 1895–1879 BC at 95.4% probability. (Note: very similar age ranges usually result when a \(\Delta R\) of \(21 \pm 7\text{ }^{14}\text{C}\) years is employed — see below for this figure.)

If we compare the PIT minimum felling dates with the calendar date ranges calculated from \(^{14}\text{C}\) and historical reign length information (Bronk Ramsey et al., 2010; Dee, 2013), or from historical-astronomical information alone (e.g. Huber, 2011; Gautschy, 2011a; 2011b; Kitchen, 2000; Hornung et al., 2006), for Senusret III and his successor Amenemhat III, we see that the minimum
felling date TPQ) ranges for the PIT timbers lie from a little before, to perhaps into, the start of the reign of Senusret III, especially when compared either to the 14C and reign length chronology of Bronk Ramsey et al. (2010) and most recently Dee (2013), or the historical dates of e.g. Huber (2011); Gautschy (2011a; 2011b) or Kitchen (2000): Fig. 11. It is important to note that there was no terminal ring in the PIT sequence, thus an unknown number of tree-rings are missing after relative year 1306 – hence the real bark date for the latest trees cut down for this boat could well lie very comfortably into the reign of Senusret III. The historical-astronomical date of the accession of Senusret III is of course a long debated topic, focused on a Sothic date attributed to his Year 7 (Krauss, 2006: 448–450; Shortland, 2013: 26–27), and lunar data related to Senusret III and Amenemhat III (Luft, 1992). There are arguments against some previous solutions including the 1866 BC date employed by Kitchen or the 1872 BC date in Parker (1950, 1976) and as employed in Rybolt (1997: 184–185). As Krauss (2006: 448–450) summarises, there are possible Sothic dates from ca. 1882–1830 BC, although the later dates rely on an observation point in the south of Egypt at Elephantine, rather than in the Illahun (or general Memphis) area – where the record of the observation was found. There are good arguments to doubt the southern/Elephantine hypothesis at this time (e.g. Huber, 2011: 224; Gautschy, 2011a: 54; Rose, 1994; Luft, 1992; Leitz, 1988). If we accept a general Memphis area observation, and the good recent evidence for a 30-year sole reign for Senusret III (Gautschy, 2011a: 56–58), this gives a range of ca. 1882–1865 BC for Senusret Year 7 (Gautschy, 2011a: 59 – note typo in her Fig. 3 where “1 Senusret III option 1 should be 1872 BC – compare Gautschy, 2011b: 11–18), and a seemingly most plausible solution (despite imperfect data) for an accession date for Senusret III of ca. 1873/1872 BC (Huber, 2011: 211–225), with 1883 BC the next most likely date (Gautschy, 2011a: 59 – note these 1872 BC and 1883 BC dates, options 1 and 2, are instead called options 3 and 4 in Gautschy, 2011b), and both of these dates within a possible range from ca. 1889–1871 BC. A date of accession in this range and likely ca. 1873/72 BC, allowing even for just a few missing outer rings to bark on PIT-18A, could see the latest timbers in the boat comfortably felled in the earlier part of his reign. As noted above, PIT-12 potentially originally had bark edge before coring, but has (as now extant) lost some original outer rings – amount unknown. Based on outer ring-widths of 220+ year-old cedars (as PIT-12 was – note record shown in Fig. 2a and b has been truncated by 61 rings at the start) from Lebanon analysed by R. Touchan and M. Hughes (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/measurements/asia/leba004.rwl; and ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/measurements/asia/leba002.rwl), even a missing 2–8 mm (the sort of amount easily lost when drilling a dry-wood core) could represent around 2–20 rings. If PIT-12 was felled within ca. 2–20 years of the last extant ring, or perhaps close to a likely felling date for PIT-18, then there is an argument that both could easily represent felling dates in (or after) the 1880s BC to 1860s BC close to, or in, the earlier part of the reign of Senusret III.

Previous scholarship has noted extensive evidence for reuse of timbers among the cedar wood used in the Dahshur boats (e.g. Creasman, 2005: 36–37, 83; 2010a: 113; 2010b-a) – although reportedly less so for the Carnegie and Chicago boats (Creasman, 2010b: 99). Reuse of cedar wood is very likely since it was so valuable in antiquity. Even within the selected PIT Chronology employed here (Fig. 2a), the wood comprising PIT-1A and PIT-21A ends much earlier than several of the other timbers and may well represent reused wood. Since Kuniholm (2001) seems to have failed to account for serial reuse (Creasman, 2013, 2014b, in press), and now that those dates may be rejected, it is no longer necessary to try to account for a supposed general 200+ years discrepancy in age between timber cutting date and final use. Instead, the dates achieved by this project indicate that the original bark and so cutting/felling dates for the latest trees employed in the Pittsburgh boat probably lay at the earliest just before the reign of Senusret III, and in fact likely during his reign (allowing for missing wood to bark). Although missing a terminal ring, and although the timber might also have been stored for a few years before use, the dating of the Pittsburgh boat is noticeably more consonant with a high chronology date for Senusret III (e.g. Huber, 2011; Gautschy, 2011a), in line with the recent 14C-based findings of Bronk Ramsey et al. (2010) and Dee (2013).

4.2. 14C offset and climate

The PIT 14C data exhibit an offset towards slightly older 14C ages versus the mid-latitude northern hemisphere standard (IntCal13: Reimer et al., 2013). Of the 46 individual measurements on PIT samples (Fig. 8), 32 are older than the central IntCal13 value (82.6%). This pattern is especially clear from around 2100 BC: from the data placed ca. 2103 BC onwards in Fig. 8 and 24 of the 31 data are older than the central IntCal13 value (77%), and the average offset is $+22.2$ 14C years. If the dating model in Fig. 7 is re-run excluding the data placed before ca. 2120 BC, then a ΔR test of 0 $+\Delta R$ 14C years returns, on average over multiple runs, an offset in round terms of 21 ± 7 14C years (1SD). This offset is evident, especially from around and after ca. 2100 BC, in both the OxA and VERA data (Figs. 7 and 9). In contrast, the CHI data do not exhibit any systematic offset. In a more recent period, cedar from Lebanon (AD 1800–1859) and pine from Cyprus (AD 1801–1930) also exhibit no systematic offset (Manning and Kromer, 2012: 456 and Figs. 7 and 8 [note: there is a typo on p.456 where it should read Fig. 8 regarding the cedar]). The good general accuracy and precision of the Oxford and VERA 14C laboratories, both on known age samples, and relative to each other, is well established from several major projects (e.g. Bronk Ramsey et al., 2010; Manning et al., 2006). Thus it is likely that this observed offset within the PIT 14C time series is real and indicates a causal mechanism (as suggested for other datasets from some other periods and circumstances: Kromer et al., 2001; Dallinger et al., 2004). On the basis of all the PIT data we estimate the offset (ΔR)
as about 17 ± 14^C years, and for the data after ca. 2120 BC it is about (rounded) 21 ± 7^C years. These numbers are similar to the C offset of 19 ± 5^C years determined for samples growing in Egypt (Dee et al., 2010). The mechanism in Egypt likely relates to the (pre-modern-dam) Nile hydrologic cycle which places the growing season in Egypt largely opposite to that in central/northern Europe, and thus allows the C measurements to reflect the small known intra-annual variations in C, between a winter/spring C low versus a summer C high (Dee et al., 2010: 689–690). A growing season issue, linked to a climate change episode, seems the likely explanation for the PIT case as we now outline.

Intra-annual sampling of the troposphere in the recent past (Levin et al., 1992; Levin and Hessheimer, 2000; Levin and Kromer, 2004) indicates the scale of intra-annual C variations in the modern period. If we then approximately exclude the effects of modern fossil fuel contribution (Levin et al., 2003; Randerson et al., 2002), and atmosphere-biosphere exchange, the underlying (pre-modern) seasonal maximum intra-annual variation — that is northern hemisphere seasonal variability between the March minimums and August maximums — due to recurrent changing stratosphere–troposphere exchanges in the extra-tropical and sub-polar region allows for a variation on the order of up to 4^C, and likely more typically 2^C (or around 16–32 C years). The intra-hemispheric location-dependent (regional) differences identified in the study of McCormac et al. (1995) were of a similar order (ca. 2.5^C), which provides further confirmation and guidance as to scale. Thus intra-annual variations of up to around 14^C years are plausible and even expected where samples reflect the intra-annual low versus high in C levels, and this annual cycle may be further exaggerated where there are latitude and/or substantial

Fig. 9. A. Best fit placement of the VERA-only data from PIT-6A against IntCal13 (Reimer et al., 2013) employing OxCal (Bronk Ramsey, 1995; 2009a) — compare with Fig. 7A above where OxA + VERA combined data). The grey bars for each date illustrate the 1^s uncertainties in both the C and calendar timescales. Note the same tendency to older C ages versus IntCal13 from around and after 2117 BC and certainly ca. 2074 BC as in Fig. 7A. B. Minimum Felling Date TPQ from the model in A. C. A re-run of the wiggle-match testing for a possible C offset allowing for a Δt of 0 ± 20^C years — a small offset is evident, but much less so than in Fig. 7. D. A further re-run of the wiggle-match, excluding the oldest (first five) VERA data placed ca. 2188–2148 BC in Fig. 9A, testing for a possible C offset allowing for a Δt of 0 ± 20^C years, produces a somewhat larger offset, heading more to the scale of the one in Fig. 7. The offset appears to take effect from about the 21st century BC onwards and to be real in the data from both laboratories.
elevation differences during periods of high \(^{14}\)C production (major solar minima: Kromer et al., 2001; Deller et al., 2004).

The trees supplying the wood employed in the IntCal13 \(^{14}\)C calibration curve for the period relevant to the CHI and PIT samples come from central and northern Europe and primarily Germany (Reimer et al., 2013). The typical growing season in this region is late spring and especially summer. For example: oaks in Germany and other temperate areas of Europe (north of the Alps) — the backbone of the IntCal13 dataset — typically start annual growth in late April to early May and stop annual growth around the end of August to mid-September (Eckstein, 2007: 55–56; Haneca et al., 2009: 4). This (later) spring and summer period (especially August) is when annual northern hemisphere \(^{14}\)C levels peak (e.g. Randerson et al., 2002; Levin and Hesshaimer, 2000). As a result, the \(^{14}\)C recorded in the tree-rings employed in IntCal13 more or less offers a record of the annual peak summer \(^{14}\)C for the mid-latitude northern hemisphere (Hua and Barbetti, 2004: 1279).

An example is the good correspondence of the \(^{14}\)C levels in summer atmospheric samples from Germany with the \(^{14}\)C levels measured in the annual tree rings of a nearby tree (Levin and Kromer, 1997: Fig. 2).

However, the PIT trees were growing during a period when climate conditions in southwest Asia have been widely argued to reflect increased aridity and cooler conditions as part of a wider rapid climate change episode (e.g. Weiss et al., 1993; Dalfes et al., 1997; Bond et al., 1997; Cullen et al., 2000; Haug et al., 2001; Thompson et al., 2002; Staubwasser et al., 2003; Stanley et al., 2003; Mayewski et al., 2004; Booth et al., 2005; Arz et al., 2006; Drysdale et al., 2006; Staubwasser and Weiss, 2006: 380–383; Parker and Goudie, 2008; Magny et al., 2009; Weiss et al., 2012: 185–187; Weiss, 2014; Marriner et al., 2013; Salzer et al., 2014). In previous work an offset towards older \(^{14}\)C ages for tree-ring samples from Anatolia has been observed during two periods of major reduced solar irradiance and broadly coinciding with Bond ice-rafted debris (IRD) events 0 and 2 (Bond et al., 1997, 2001). A quoted above this was suggested to link with increased intra-annual differences in the growing seasons over the relevant period for the trees employed for the IntCal \(^{14}\)C dataset versus the trees analysed from the east Mediterranean (Kromer et al., 2001, 2010; Manning et al., 2010; Manning and Kromer, 2011). The PIT \(^{14}\)C offset correlates with Bond IRD event 3. In general, this was a period when conditions were cooler (and especially at higher latitudes) and more arid at lower latitudes and in southwest Asia in particular. During this period it might be anticipated that the growing seasons of the Quercus sp. trees in central Europe and Ireland employed for IntCal, affected by cooler conditions, typically shifted to a slightly later start to the growing season, with maximum growth centred around the August \(^{14}\)C high. In contrast, cedar trees in the east Mediterranean, which normally reflect primarily a spring/summer (April/May–June) versus summer growing season (Hughes et al., 2001; Touchan et al., 2003), when affected by drier conditions probably started growing slightly earlier (since there was less snow pack) and probably ceased growth earlier due to less available water (for example, in the Taurus Mountains, precipitation is the key limiting factor for cedar growth: Hughes et al., 2001: Fig.3). This would cause these cedar trees, during such a period, to reflect more closely the early spring \(^{14}\)C low (and in contrast to the central and northern European oaks reflecting the summer, especially August, \(^{14}\)C maximum). The net effect would be typically that the difference in growing seasons between central Europe and Ireland versus the east Mediterranean would be exaggerated during such a period, as in the two time intervals discussed in Kromer et al. (2001), sufficient that they are able to be distinguished in \(^{14}\)C terms (at around or above about \(2\) \(\sigma\)). Although inadequate (as discussed above), the limited independent \(\delta^{13}\)C data available from the CHI-3 and PIT-6 samples could be compatible with the suggestion of increased aridity on average from after 2100 BC as affecting the PIT-6 tree compared to the CHI-3 tree.

These findings suggest (again) that \(^{14}\)C may offer a useful climate tracer when comparing different areas and latitudes, and not only in the modern period (as e.g. Levin and Hesshaimer, 2000; Hua and Barbetti, 2007). In particular, regional expressions of processes associated with major solar minima and/or Bond events might be elucidated. More work on regional \(^{14}\)C time-series in the pre-modern period is desirable to enable detailed investigation of such potential.
The precise near-absolute dating of the coffin of Ipi-ia-ishutef and the Pittsburgh boat provides good agreement with the standard range of the Egyptian historical chronology. The Pittsburgh boat, in particular, offers a set of circumstances which clearly favours a high Egyptian Middle Kingdom chronology (as other recent \(^{14}C\) work: Bronk Ramsey et al., 2010; Dee 2013). At the same time, the \(^{14}C\) data from the Pittsburgh boat indicate a temporary small but important offset within the period ca. 2200–1900 BC in contemporary \(^{14}C\) ages between the Levant and central and northern Europe. This seems likely due to exaggeration of normal seasonal variations in the uptake of \(^{14}C\) and its latitudinal distribution caused by climate change in the 2200–1900 BC/4200–3900 BP (y2k) interval, and conforms to other such findings of small offsets. This finding illustrates the potential of \(^{14}C\) as a tracer of regional climate change episodes in the past. The regional \(^{14}C\) offset has in general terms only a small impact for \(^{14}C\) dating in the east Mediterranean in the period, but can be relevant to higher-precision cases. The effect of this offset is that in some periods—like ca. 2200–1900 BC—trees in the Levant offer \(^{14}C\) ages approximately similar with \(^{14}C\) ages on contemporary plants growing in Egypt (see Fig. 12, but important offset within the period ca. 1900 BC), whereas in other periods they match the general mid-latitude northern hemisphere record and are offset from contemporary Egyptian samples (by about the Egyptian offset factor of 19 ± 5 \(^{14}C\) years reported in Dee et al., 2010).

Acknowledgements

This project was supported by the College of Arts and Sciences, Cornell University, the National Science Foundation, award BCS1219315, the Malcolm H. Wiener Foundation, and individual sponsors. We thank the laboratory teams at Oxford, Vienna and Cornell. We thank the Oriental Institute Museum, The University of Chicago, for permission to publish on the coffin of Ipi-ia-ishutef. We thank, and acknowledge, Peter Ian Kuniholm and Maryanne Newton for their previous work on the Pittsburgh and Chicago tree-ring samples.

References

