
By Peter W. Brewer

For Tellervo server and desktop
version 1.0

©2012 Peter W. Brewer

Malcolm and Carolyn Wiener Laboratory for Aegean
and Near Eastern Dendrochronology
Cornell Tree-Ring Laboratory
B48 Goldwin Smith Hall
Cornell University
Ithaca, New York 14853. USA.

T +1 607 255 8650
B p.brewer@cornell.edu

Compiled: February 11, 2012

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the appendix entitled “GNU Free Documentation License” (pages

??–??).

TELLERVO
A guide for users and developers

By Peter W. Brewer

Compiled: February 11, 2012

Contents

Preface

Tellervo∗ is primarily focused on the measurement of tree ring widths and the organization and curation of the
data, metadata and physical samples for dendrochronolgoical research. It is cross-platform (running on all Java
6 enabled operating systems including Windows, MacOSX and Linux) and open-source. It includes support for
standard measuring platforms including Velmex, Lintab and Henson.

Tellervo is an extension of the original application ‘Corina’ developed at Cornell University since 2000. Corina
itself following an earlier DOS-based version programmed in C, which in turn was derived from a collection of
FORTRAN and C utilities. Corina is built around a standard file-based data management system. In 2007,
work began on a major rewrite of the software whereby this file-based data management was replaced with an
object-relational database management system (ORDBMS) and server/client webservice infrastructure. The
application was renamed Tellervo to reflect the substantial changes made from the original Corina code-base.

The Tellervo initiative was made possible because of the support of the College of Arts & Sciences, Cornell
University, via a grant to Sturt Manning to re-envisage the Cornell Tree-Ring Laboratory.

This manual is divided into two main sections, the first for users, the second for developers. Tellervo is open
source software (see the details of the license on pages ??–??), so you are welcome to inspect and edit the
code. The second part of this manual will help you do that.

Over the years Corina and Tellervo have been developed by a number of people: Peter Brewer, Chris Dunham,
Aaron Hamid, Dan Girshovich, Ken Harris, Drew Kalina, Rocky Li, Lucas Madar, Daniel Murphy, Robert
’Mecki’ Pohl and Kit Sturgeon. We would like to thank the many people that have tested the applications
especially: Charlotte Pearson; Carol Griggs; Brita Lorentzen; Jess Herlich; LeAnn Canady; Kate Seufer; and
many undergraduate and postgradutes students at Cornell.

We would also like to thank the College of Arts & Sciences and the Department of Classics, Cornell University;
the Malcolm H. Wiener Foundation; and the many patrons of the Malcolm and Carolyn Wiener Laboratory for
Aegean and Near Eastern Dendrochronology for their financial support.

We hope that you find Tellervo useful and look forward to hearing your feedback.

∗The name Tellervo is derived from the Finnish goddess of the forest.

Part I

User Guide

Chapter 1

Installation

Tellervo is made up of two packages; the Tellervo desktop application and the Tellervo database server. Tellervo
was designed primarily for laboratories with multiple users, each running the Tellervo desktop application on
their own computer connecting to a single central server containing the lab’s data. In this situation the Tellervo
server would be run on a separate computer to those running the desktop client, but this need not necessarily
be the case. It is perfectly possible to run both the server and the client on the same computer. This is likely
to be the situation if you simply want to try out Tellervo, if you don’t have a separate server, or if you do not
work in a multi-user laboratory.

1.1 Server installation

For the Tellervo desktop application to be useful you will require access to a Tellervo server. If you are running
Tellervo in a lab where the Tellervo server has already been set up by your systems administrator, you can skip
this section.

The Tellervo server is made up of a number of components, which unlike the desktop client, can’t be easily
combined together into cross-platform packages. Although all the constituent components are open-source
and available for all major platforms, building and maintaining separate packages for each platform is too large
a task for a small development team. To conserve resources, we therefore made the decision to utilize Virtual
Machine technology to ensure that the Tellervo server could still be run on all major operating systems. This
means that we can package the Tellervo server for a single operating system (Ubuntu Linux) and then distribute
it as a Virtual Appliance that can be run as a program on your normal operating system.

The Tellervo server is therefore available via two main methods. The first is as a VirtualBox∗ Virtual Appliance
which can be run on any major operating system, the second is as an Ubuntu package for running natively on
an Ubuntu Linux server. The source code for the server is also available so it is perfectly possible for more
experienced users to set up the Tellervo server to run natively on other platforms. But to do this you will
require a good knowledge of Apache 2, PHP and PostgreSQL. Choose the most applicable method and follow
the instructions in the following sections.

1.1.1 Install as Virtual Appliance (recommended method)

To run the Tellervo server Virtual Appliance, you will first need to download and install VirtualBox from
http://www.virtualbox.org. Installation packages are available for Windows, MacOSX, OpenSolaris and
many Linux distributions.

Once you have VirtualBox installed, you will then need to download the Tellervo server from the Cornell
website http://dendro.cornell.edu/corina. This package contains a bare-bones Ubuntu Linux server

∗Note that the Tellervo appliance is provided in the open standard format OVA. You should be able to run the appliance in other
Virtual Machine applications (e.g. VMWare, Citrix etc) but the OVA standard is very young and changing fast. We recommend
sticking with VirtualBox until the standard stabilizes.

http://www.virtualbox.org
http://dendro.cornell.edu/corina

6 Tellervo: A guide for users and developers

with everything required to run the Tellervo server installed and ready to use. As VirtualBox, the entire
Ubuntu operating system and Tellervo server components are all open source there are no license fees to pay.

1. Open VirtualBox and go to File : Import Appliance

2. Press the choose button and locate the virtual appliance file that you downloaded from the website†

3. Rename the server if you choose, then press the finish/import button

4. Once the server is installed, highlight it in the virtual machine list and press the start button

5. Read and accept the information about how to gain and release control of the keyboard in VirtualBox

6. The server will boot and eventually present you with a command line login screen. Log in with the
details:

Username : corina

Password : w3l0v3tr33s

7. Start the server configuration by typing:

sudo corina-server

You will be prompted for the server password again

8. Answer the questions and the configuration will finish by testing your new server (see figure ??).

9. Note down the URL of your new Tellervo webservice as you will need to enter this when you start your
Tellervo desktop client. If you need to know the URL at a later date you can run the tests again by
typing:

corina-server --test

10. You can now install and run the Tellervo Desktop application (see section ??)

Figure 1.1: Screenshot of VirtualBox running the Tellervo
server. The console contains the results of the tests run at
the end of the configuration routine.

To save on download size and disk space only the
essential packages to make the server run have been
installed. This means there is no graphical interface
just a command line. Hopefully this should not be a
problem as once set up, the only interaction needed
with the Virtual Appliance will be through the normal
Tellervo desktop application. If you would prefer to
use a graphical interface to the server this can be
easily installed. See chapter ?? for further details.

1.1.2 Ubuntu native installation

If you are fortunate enough to be running Ubuntu
then the native Ubuntu deb package is the best and
easiest method for installing the Tellervo server, oth-
erwise see section ?? to install the server as a Virtual
Appliance.

To install the Tellervo server in Ubuntu simply down-
load the deb package from the Cornell server http://
dendro.cornell.edu/corina and install with your
favourite package manager. For instance, to install
from the command line simply type:

sudo dpkg --install corina-server.deb

†If you are using an older version of VirtualBox it may expect an OVF rather than the OVA file provided. The OVA file is a tar
file containing several files required by VirtualBox including an OVF file. If you rename the extension of the OVA file to tar then
extract the contents to a folder using a tools like WinRAR you should then be able to continue.

http://dendro.cornell.edu/corina
http://dendro.cornell.edu/corina

Installation 7

The package will automatically run a configuration
script to assist with creating a database user, building the Tellervo PostgreSQL database, setting database
permissions and setting up the Apache webservice. The configuration ends with a test routine to check all
services are set up correctly and if so, will provide you with the URL of the newly configured Tellervo webservice.

1.1.3 Advanced install on other operating systems

As mentioned previously, the limited resources available for Tellervo development means that we have been un-
able to produce native installers for platforms other that Ubuntu. If you are an experience systems administrator
though, it should not be too difficult to set up the Tellervo server manually.

The Tellervo server is essentially a PostgreSQL database accessed via a PHP webservice running on Apache 2.
The following dependencies are therefore required: postgresql-9.1; postgis; postgresql-contrib-9.1; postgresql-
9.1-pljava; sun-java6-jre; apache2; php5; php5-pgsql; php5-curl; php5-mhash.

The basic procedure for installation is as follows:

I Install all dependencies
I Create PostgreSQL database from Tellervo template SQL file
I Set up a database user and provide access to the server in the pg hba.conf file
I Give this user read and write permissions to the database
I Copy the webservice code into a web accessible folder
I Set up Apache to see this folder by creating an entry in the sites-enabled folder
I Restart PostgreSQL and Apache and check you can access the webservice from a web browser

1.2 Desktop application

Installation packages for the Tellervo desktop application are available for Windows, MacOSX and Ubuntu
Linux. Tellervo can also be run on other operating systems as long as they support Java 6 or later‡.

To install Tellervo, download the installation file for your operating system from http://dendro.cornell.

edu/corina/download.php. The website should provide you with a link to the installer for your current
operating system:

Windows – Run the setup.exe and follow the instructions. If you do not have Java installed the installer
will direct you to the Java website where you can get the latest version. Once installed, Tellervo can be
launched via the Start menu.

Mac OS X – As mentioned above, Tellervo requires Java 6. Although MacOSX ships with Java installed,
unfortunately Apple have been very slow to provide Java 6. Although it was released in 2006, it was
not until August 2009 that Apple made Java 6 available as part of v10.6 (Snow Leopard). Tellervo can
therefore only be run on Snow Leopard or later. To install Tellervo, download then open the zip file
and drag the Tellervo.app into your applications folder. To use the 3D mapping or measuring platform
hardware in Tellervo you will also need to install the ‘Tellervo Drivers’ package.

Ubuntu Linux – A deb file is available which was designed for use on Ubuntu distributions but should
work on any Debian based system. Install using your favorite package management system or from the
command line like this: e.g.

sudo dpkg --install corina 2.xx-1 all.deb

On Ubuntu and similar distributions, the package should add a Tellervo shortcut to your applications
menu. Alternatively you can start Tellervo from the command line by typing corina.

Other operating systems – Make sure you have Java 6 installed, then download the Tellervo jar file to
your hard disk. You can run Tellervo from the command line by typing:

‡Tellervo was initially developed against Sun Java 6 JRE, however, now OpenJDK6 is routinely used. See section ??, page ??
for more information.

http://dendro.cornell.edu/corina/download.php
http://dendro.cornell.edu/corina/download.php

8 Tellervo: A guide for users and developers

java -jar corina.jar

Once you have installed your Tellervo Desktop application and you have access to a Tellervo server you are
now ready to launch Tellervo for the first time.

1.2.1 First time launch

When you launch Tellervo for the first time you will be presented with a setup wizard (figure ??). Following
the wizard to configure the main settings required before you can begin to use Tellervo. If you want to re-run
this wizard at any time you can do so from the entry in the Help menu. You can also manually edit all these
settings from the Tellervo preferences dialog which can be found in Edit : Preferences.

Figure 1.2: The Tellervo setup wizard will launch the first time you start Tellervo.

The pages of the wizard include:

Network connection – this configures how your computer accesses the internet. Most users will be able to
use the default ‘Use system default proxy settings’ option here, but if you know that your computer is
behind a corporate proxy server you may choose to manually provide the settings.

Configuring the Tellervo server – Tellervo comes in two parts: the Tellervo desktop client that you are using;
and the Tellervo server which runs the database that stores your data. If you are working in a lab your
systems administrator may have already set up the Tellervo server and given you the URL to connect to.
Alternatively, you may have already installed the Tellervo server yourself. If so the installation program
should have given you the URL. If you don’t have access to a Tellervo server yet, you should close this
wizard, then go to the Tellervo website and download it.

Measuring platform configuration – the next page enables you to configure measuring platform hardware
attached to your computer. Some measuring platforms have fixed settings in which case the port settings
will be set automatically, but others can be changed in the hardware and must be set explicitly here.
Use the ‘Test Connection’ button to make sure that Tellervo can successfully communicate with your
platform.

Once you have completed the wizard you will be presented with a dialog (figure ??) for logging in to your
Tellervo server.

The username and password details requested are your Tellervo login credentials (not your system or network
credentials) provided to you by your systems administrator. If you are using your own Virtual Appliance server,
the default admin user details are provided in section ??, page ??. The dialog gives you the option for saving
your username and/or password if you prefer. We recommend using this feature only on personal machines.
You may choose to cancel the login if you like and Tellervo will continue to load, however, you will not have
access to the Tellervo database therefore very few functions will be available to you.

Figure 1.3: Tellervo server login dialog.

Once you have logged in you will be presented
with the Tellervo home screen. This contains the

Installation 9

main menus for the program as well as three quick-
link icons for creating new records, opening exist-
ing records and importing existing data files to the
database.

1.2.2 Mapping support

Tellervo includes 3D mapping for visualization of
sampling locations. Although this is not necessary
for most tasks, to make use of the mapping func-
tions you will require a OpenGL 3D capable graphics
card. To check whether your computer already sup-
ports 3D mapping, open Tellervo, go to Admin, then
Site map. Tellervo will warn you if your graphics card
is not supported.

All MacOSX computers should automatically support OpenGL. Most Windows and Linux computers made
since 2006 should also support OpenGL, however, this does require proper drivers to be installed. In some
cases Windows computers may include a compatible graphics card, but may only have the default Windows
video drivers installed. If you are having trouble with the mapping in Tellervo make sure you have installed the
most recent drivers for your graphics card. Linux users may be required to install proprietary graphics drivers.

The mapping component of Tellervo makes use of NASA’s open source World Wind Java. NASA’s website
http://worldwind.arc.nasa.gov/ contains further information and instructions that you may find helpful
if you are having problems getting the mapping to work.

1.3 Uninstalling

We understand that Tellervo will never suit the requirements of all users, but as an open source product, we
would really appreciate feedback as to why it didn’t work for you. Without this feedback it is difficult to
prioritize future development.

1.3.1 Tellervo desktop application

For Windows users, Tellervo desktop can be uninstalled using the standard add/remove programs feature in
control panel, or via the item in the Tellervo start menu. Mac users should simply delete the application
from their applications folder. Linux users should use their prefered package management tool e.g. from the
command line:

sudo dpkg --remove corina

1.3.2 Tellervo server

Please note that uninstalling the Tellervo server will delete your Tellervo database and all the
data it contains. Make sure that you export any data you need before doing uninstalling.

If you are running the Tellervo server as a virtual appliance simply follow the uninstall instructions for VirtualBox.
If you are running Tellervo server as a native Linux server, you should use your preferred package mangement
tool e.g. from the command line:

sudo dpkg --remove corina-server

http://worldwind.arc.nasa.gov/

Chapter 2

Getting started

Once you have your Tellervo desktop application installed (see chapter ??) and you also have access to a
Tellervo server (either via your lab network administrator or your own on as a Virtual Appliance) you are ready
to start using Tellervo. Below are some basic instructions for performing common tasks in Tellervo followed by
a number of more in-depth chapters.

2.1 Measuring a new sample

Once your measuring platform has been configured, measuring your first sample is simple. To start a new
measurement go to File : New or click the ‘new’ icon on the home screen. A dialog will appear where you can
scan your sample’s barcode, or press the button to enter metadata for your sample later. Barcodes minimize
data entry errors and also speed up the process of measuring your samples. See section ?? for more information.
Once you have scanned your barcode or pressed the button, you will then be presented with an empty Tellervo
data screen (figure ??).

Figure 2.1: An empty data window ready to receive measurements. Note the status bar at the bottom includes buttons
for changing the measurement variable, display units and cumulative statistics. The data table stores ring width values
in decadal rows following the standard convention which derives from data entry via punch-cards. Undated sequences
begin in the relative year 1001 for the same reason.

The next step is to fill out the metadata tab. If you have used a barcode, nearly all of this metadata will
be filled in for you, otherwise you will need to fill this out yourself. Details about metadata can be found in
chapter ??, page ??.

12 Tellervo: A guide for users and developers

Before you begin measuring you need to tell Tellervo what sort of measurements you are doing: whole ring
widths; or early/latewood widths (the default is whole ring widths). To specify early/latewood widths you need
to go to Edit : Measuring mode. . . : Early and latewood widths. If you use this menu after you have already
measured some rings you will be warned that Tellervo will delete the data you have already collected. Once
in ‘early and latewood widths’ measuring mode you will be able to choose which data is displayed in the table
by clicking the variable box on the status line and choose between: Ring width; Earlywood width; Latewood
width; Early/Latewood width.

To begin measuring your sample you can now go to Edit : Start measuring or you can press F5. While
measuring you should be provided with audible feedback for each ring measured with a more pronounced sound
made every 10th ring. If there is a problem communicating with your measuring hardware, check your settings
in the preferences dialog. If you still have problems contact the Tellervo developers by going to Help : Report
bug on last transaction, making sure you include your email address and any further information.

Depending on the measuring platform hardware you have, you will see some variation of the measuring panel
in figure ??. The left display holds the absolute position of the last ring boundary (for device that measure
cumulatively), the middle display holds the last recorded measurement width and the right display holds the
current position of the measuring plaform (for devices that report live measurements). The right-hand display
is useful for devices that don’t have a physical display such as the Lintab.

Figure 2.2: Measuring control panel.

Tellervo supports the measuring of rings both individ-
ually and cumulatively. We feel that it is easier and
more accurate to measure rings individually, that is
to say the device is reset to zero after each measure-
ment. If a device accepts requests to reset measure-
ments (e.g. Quadra Chek boxes) or if it automatically
resets itself to zero after recording a measurement
(e.g. EVE IO) then this procedure is used by Tellervo.
In this case the user begins measuring by setting the display to zero, then turns the platform to the end of the
ring, then either presses the ‘measure’ button on the hardware device or the ‘record’ button on the screen.

If your device does not have a physical ‘measure’ button you don’t need to use the mouse in
Tellervo to click the ‘record’ button each time. Use the tab key to ensure the record button is
highlighted, then you can use the space bar on your keyboard instead. This means you don’t need
to lift your eyes from your microscope to ensure you are clicking the button correctly.

Certain devices (e.g. Boekler Microcode boxes) do not listen for requests to reset to zero. In this case to measure
each ring individually, you would need to manually reset the reading to zero following each measurement. This
would of course be extremely tedious. In this situation Tellervo measures cumulatively from the beginning of
the first ring and calculates the ring width based on the previous ring boundary position. With this method you
must be careful not to knock your sample, and you must also take special care when altering radii to navigate
around problem structures. If you do knock your sample, the best way to recover is to reset your platform to
zero and press the measure button. Next, press the ‘stop measuring button’, manually fix the values in the
data table, then begin measuring again from where you left off.

If you are in ‘Early and latewood widths’ measuring mode the measurements are made and sent to the data
table in pairs. The first measurement should be of the earlywood of the ring, and the next value the latewood
measurement. Whether you are currently measuring early or latewood is indicated as a message at the bottom
of the measuring panel.

While you measure your sample you can flag features in a ring by right clicking on any cell in the table and
selecting one or more of the standard notes (see figure ??).

Tellervo supports all standard TRiDaS remarks including: fire damage; frost damage; crack; false ring(s);
compression wood; tension wood; traumatic ducts; single pinned; double pinned; triple pinned and many
others. Rings that include remarks are indicated by the relevant icon in the data screen. Depending on your
method of work, this can be useful for keeping track of sample pin holes. For instance, if a missing or false ring
is discovered after a sample has been pinholed, the offset in pinholes can be easily seen without resurfacing the
sample. In the future Tellervo will also include support for user defined ring remarks.

Getting started 13

Figure 2.3: Right click context menu showing some of the
options for adding remarks to rings.

The data screen also contains a status bar at the bot-
tom. By click on the units section, you can switch
between micron and 1/100th mm units. Tellervo un-
derstands the units being supplied by the measuring
platform, therefore changes here are purely for display
purposes only. If you have a platform that measures
in microns, but prefer to see the values in 1/100th
mm then you can use this feature. At the bottom
ring of the status bar you can choose one of a variety
of summary information about your series.

Once you have finished measuring your sample, you
should then go to File : Save to save your series to
the database.

2.2 Opening existing data

If you have used traditional dendrochronology software, you are probably used to opening existing dendro data
files from your computer. Tellervo works in a different way. All data accessed by Tellervo is stored within the
central Tellervo database rather than in files. The database provides many benefits over file based storage,
most importantly it means there is a high degree of security and integrity in your data.∗

To use data that you have stored in existing data files you must first import your data into the Tellervo
database. This gives you the opportunity to clean-up your data! For details of how to import your data see
chapter ??, page ??.

Once you have data in your database, either by importing existing data files or measuring new samples, you
can access your data through the database browser. This is accessed through the File : Open or File : Open
multiple menus and an example of the dialog is shown in figure ??. The same database browser dialog is
used in multiple places throughout Tellervo, e.g. when adding addition series to graphs and when choosing
chronologies to crossdate against.

Figure 2.4: Screenshot of the database browser dialog.

∗This doesn’t mean you don’t have to backup your data though! Whoever is in charge of maintaining your Tellervo database
should make sure regular backups are made–preferably offsite.

14 Tellervo: A guide for users and developers

The database browser is divided into two main parts. On the left is the browse and search tabs, and on the
right is the series table. Selecting options in the browse or search tab populates the series table on the right
with all the series that match the specified criteria.

The search tab is currently a ‘work-in-progress’ so we recommend you use the browse tab until
further notice.

The browse tab shows a heirarchical tree view of the contents of your Tellervo database based upon the
TRiDaS data model. The panel will be pre-populated with all the objects in your database but it is possible
to ‘drill-down’ by right clicking on an object and choosing ‘Expand branch’. Expanding an object for instance,
will show all the elements associated with that object, and expanding an element will show all the samples
associated with the specified element. To better understand the TRiDaS terminology please read chapter ??,
page ??.

By double clicking (or right clicking and choosing ‘Search for associated series’) on an item in the browse panel
Tellervo will search the database for all series that are associated with the specified entity. The results of the
search will be shown in the series table on the right of the screen. This table shows basic metadata about each
search and is sortable by click on any of the column headers. To open a series, simply select one of these series
and click ‘OK’. If the database browser is open in ’multiple series’ mode, then you can use the arrow buttons
to select multiple series to open in one go.

There is also a ‘Show options’ button on the database browser dialog. This adds additional advanced methods
for filtering the series table to help you find the data you are interested in.

2.3 Reconciling data

Tellervo has been developed not only for experience dendrochronologists, but as a tool for teaching students.
It therefore includes a comprehensive ‘reconciling’ tool for supervisors to check the quality of measurements
made by students. The reconcile dialog does a comparison of a measurement series made by a student with
a references series of the same radius measured by the supervisor. The same dialog can also prove useful
for comparing measurements from two experienced dendrochronologists when handling particularly difficult
samples.

Chapter 3

Measuring platforms

Although it is possible to manually enter the ring widths of your samples into Tellervo, it is normal to automate
this process using a measuring platform. Tellervo supports the most common measuring platforms including
Velmex and Lintab. However, please note that standard Lintab platforms use a proprietary communications
protocol. Rinntech–the manufacturers of Lintab platforms–claim intellectual property rights over this protocol.
During discussions between the Tellervo development team and Rinntech an agreement was reached whereby
the Tellervo developers agreed not to release details of the protocol. In turn Rinntech has agreed to produce
an adapter that can be attached to Lintab platforms so that they communicate with an open ASCII protocol.
Users wishing to use Lintab platforms with Tellervo (or any software not developed by Rinntech) must therefore
contact Rinntech and purchase an adapter.

Measuring platforms typically use serial ports to communicate to computers. In recent years computer man-
ufacturers have been phasing out serial ports so you may need to purchase a serial-USB converter. Modern
MacOSX, Linux as well as Windows 7 should support most serial-USB adapters out of the box, otherwise
you must install the relevant drivers before continuing. Recent Lintab USB platforms use internal serial-USB
converters so are treated in exactly the same way by Tellervo.

To begin, shut down your computer, attach your platform, then reboot and launch Tellervo. Next, go to the
preferences window and open the hardware tab and you should see an interface that looks like figure ??.

Figure 3.1: The hardware preferences dialog.

In the type pull down menu, select the type of measuring equipment you are using. Note that this refers to the
equipment that the computer is attached to, and not necessarily the measuring platform itself. For instance,
Velmex platforms are typically connected through a Metronics digital readout device. Included in this list is the
EveIO device which is an open-source device designed for the Cornell Tree-Ring Laboratory. Circuit drawings
for this device can be obtained from the Cornell lab to enable Hensen measuring platforms to be used with

16

Tellervo (and other software). If you measuring platform is not included in the list it should be relatively easy
for us to add support so please get in touch and we’ll see what we can do. Alternatively you could implement
support yourself (either personally or by employing an independent developer). Technical details on how to do
this are included in section ??, page ??.

Next you must choose the port that your platform is connected to from the pull down menu. In Windows this
will be a COM port, in Linux and Mac this will be a /dev/xxx port. Depending on the type of platform you
choose, you may also need to set various communication parameters. If these boxes are enabled, please check
the documentation that came with your measuring platform to ensure these values are set correctly.

To check whether your platform is working, click the ‘Test connection’ button (see figure ??) and attempt to
measure a few rings. Different measuring platforms have different capabilities. For instance, some include a
physical switch for firing measurement events, others also include switches for resetting measurements to zero.
Some platforms (e.g. Lintab) also continuously report the measurement values to the computer. So depending
on the hardware you use, Tellervo will present the you with slightly different options.

Figure 3.2: Testing the connection to a hardware measuring
platform.

The test dialog includes information about the capa-
bilities of your platform as well as a log window to
show the raw information being received by Tellervo.
If you are having trouble interfacing with your plat-
form, you should send the communications log to the
developers, along with as much information about
your hardware as possible.

Once you are satisfied that you are getting the correct
results from the measuring platform, click close on
the test window and then close the preferences dialog
to return to the Tellervo home screen.

Chapter 4

Metadata

Metadata is ‘data about data’. In Tellervo this means all the information associated with your physical samples
and measurement series e.g. species, location, who measured it, dimensions, slope, soil type etc.

The metadata in Tellervo, and in fact the entire Tellervo data model, is based on the Tree Ring Data Standard
(TRiDaS). Before you use Tellervo you may find it useful to read ? so that you get a better understanding of
the principles of TRiDaS, but a summary is also provided here.

4.1 Tree Ring Data Standard - TRiDaS

TRiDaS is an XML-based data standard for recording dendrochronological data and metadata. More than 80
dendrochronologists, computer scientists and specialists from research disciplines that rely on dendrochronology
have so far contributed to its development, including dendroarchaeologists, art and architecture historians,
ecologists, geologists and climatologists. The standard is therefore capable of recording the wide variety of
metadata required by these different fields. TRiDaS builds upon other established standards, such as GML for
the recording of locality information. The extensible nature of XML also means that TRiDaS can evolve to
accommodate the changing needs of dendrochronologists over time.

TRiDaS includes a total of eight data entities: project; object; element; sample; radius; measurementSeries;
derivedSeries; and value. Detailed descriptions of each of these entities are given below and their relationships
are illustrated in figure ??.

A project – is defined by a laboratory and encompasses dendrochronological research of a particular
object or group of objects. Examples include: the dating of a building; the research of forest dynamics
in a stand of living trees; the dating of all Rembrandt paintings in a museum. What is considered a
“project” is up to the laboratory performing the research. It could be the dating of a group of objects, but
the laboratory can also decide to define a separate project for each object. Therefore, a project can have
one or more objects associated with it. Due to the way research is conducted at the Cornell Tree-Ring
Lab, TRiDaS projects are not currently supported within Tellervo, although future plans include adding
project support.

Icons/128x128/object.pngAn object – is the item to be investigated. Examples include: violin; excavation site; painting on a
wooden panel; water well; church; carving; ship; forest. An object could also be more specific, for
example: mast of a ship; roof of a church. Depending on the object type various descriptions are made
possible. An object can have one or more elements and can also refer to another (sub) object. For
instance a single file may contain three objects: an archaeological site object, within which there is a
building object, within which there is a beam object. The list of possible object types is extensible and
is thus flexible enough to incorporate the diversity of data required by the dendro community. Only
information that is essential for dendrochronological research is recorded here. Other related data may
be provided in the form of a link to an external database such as a museum catalogue.

Icons/48x48/element.pngAn element – is a piece of wood originating from a single tree. Examples include: one plank of a water
well; a single wooden panel in a painting; the left-hand back plate of a violin; one beam in a roof; a

18 Tellervo: A guide for users and developers

Figure 4.1: TRiDaS data model showing the relationships between data entities. Most of the entities having a simple
hierarchical relationship (a project has one or more objects, an element has one or more samples.

Metadata 19

tree trunk preserved in the soil; a living tree. The element is a specific part of exactly one object or
sub object. An object will often consist of more than one element, e.g., when dealing with the staves
(elements) of a barrel (object). One or more samples can be taken from an element and an element may
be dated using one or more derivedSeries.

Icons/48x48/sample.pngA sample – is a physical specimen or non-physical representation of an element. Examples include: core
from a living tree; core from a rafter in a church roof; piece of charcoal from an archaeological trench;
slice from a pile used in a pile foundation; wax imprint of the outer end of a plank; photo of a back plate
of a string instrument. Note that a sample always exists and that it can either be physical (e.g. a core)
or representative (e.g. a picture). A sample is taken from exactly one element and can be represented
by one or more radii.

Icons/48x48/radius.pngA radius – is a line from pith to bark along which the measurements are taken. A radius is derived from
exactly one sample. It can be measured more than once resulting in multiple measurementSeries.

Icons/48x48/measurementseries.pngA measurementSeries – is a series of direct, raw measurements along a radius. A single measure-
mentSeries can be standardised or a collection of measurementSeries can be combined into a derived-
Series. The measurements themselves are stored separately as values.

Icons/48x48/derivedseries.pngA derivedSeries – is a calculated series of values and is a minor modification of the “v-series” concept
proposed by ?. Examples include: index; average of a collection of measurementSeries such as a chronol-
ogy. A derivedSeries is derived from one or more measurementSeries and has multiple values associated
with it.

A value – is the result of a single ring measurement. Examples include: total ring width; earlywood
width; latewood width. The values are related to a measurementSeries or a derivedSeries. In case of a
measurementSeries the variable and its measurement unit (e.g. microns, 1/100th mm etc) are recorded
as well. Tellervo currently only supports total ring width values. Support for other variables is planned
for a future version.

Working top to bottom, the TRiDaS entities are nested within each other. For instance a project contains one
or more objects, which in turn contains one or more elements, and so on. The benefit of this is that you record
data once and once only. In standard file-based dendrochronological software, when creating measurement
series you are typically required to type the name of the site, the species of tree etc over and over again. This
is not only time consuming, but very error prone.

Keeping data consistent is also difficult. For instance, if it was determined that a tree species was identified
incorrectly, in existing file-based software, the user would need to locate all data series from this tree and
manally update the metdata. This is not the case in Tellervo. A tree is represented just once in Tellervo and
samples of this tree, and the subsequent measurement series reference this one entry. If metadata for this tree
needs to be changed, the tree record is updated in just this one place. Because the measurement series obtain
this information by reference, then all associated series are automatically kept up to date.

4.2 Entering sample metadata

The metadata for a series is viewed and edited on the ‘Metadata’ tab of the main window such as that shown
in figure ??. You can see the interface is organized according to the TRiDaS data model with separate screens
for object, through to series.

When creating a new series, the metadata screens must be populated in order. This is necessary because of
the nesting of entities described above. For instance, an element is associated with an object, so an object
must be chosen because and element can be defined. Likewise, an element must be chosen before any samples
of this element can be defined.

Much of the time the entities that you need will already be stored within the database. Instead of re-entering
data, you simply need to select the existing entry from the database, saving a great deal of time. Depending
on the situation buttons will appear at the top of the dialog to let you ‘choose’ an entry from the database,

20 Tellervo: A guide for users and developers

Figure 4.2: Example of the metadata dialog. The screen is showing the details of a TRiDaS object. Note that the
location geometry field is highlighted and so a description of what is expected in this field is given below.

‘revert’ to the previously chosen entry, ‘change’ the existing entry to a different one from the database, or
create a ‘new’ record.

Please note that the content of these metadata screens is kept read-only by default. To edit the values, you
must first click the padlock icon to unlock the fields. When you have finished making changes you need to
press the save button to write the changes to the database before moving to another metadata screen.

Very few of the metadata fields in the TRiDaS data model are mandatory, but a few are. In this case, these
fields are highlighted with a red background. Note that whether a field is mandatory or not can depend on
the other fields that have been filled in. For instance, the dimensions of an element are not required, but if
dimensions are given then the units for these measurements must also be provided.

A number of the metadata fields are restricted with regards the values that you can enter. These are known as
‘controlled vocabularies’ in TRiDaS terms. Controlled vocabulary fields are represented by drop down menus.
Similarly fields that expect numerical values (such as element dimensions) will only allow numbers. The final
method data entry method is through custom dialogs. The only custom dialog currently implemented is for
locations. This accepts coordinates in either decimal degrees or degrees minutes and seconds. Alternatively you
can use data from a GPS handset by providing a GPS Exchange (GPX) format file containing the waypoints.
The GPX format is the most common interchange format for GPS data. You can pick the relevant waypoint
from the drop down menu. You can also preview the defined coordinates on a map using the ‘view on map’
button.

A popular open source GPS communication tool is GPS Babel. It is an easy to use application
which can download data from the majority of GPS handsets. See http://www.gpsbabel.org for
more information.

4.3 Entering bulk metadata

Entering metadata on a sample-by-sample basis works perfectly well, but does not necessarily fit best with
the typical workflow of a laboratory. Samples do not typically arrive in a lab in ones and twos, rather in large
quantities following a field excursion. In this case it is most efficient to enter all the metadata for the samples

http://www.gpsbabel.org

Metadata 21

Figure 4.3: The bulk metadata entry screen. The ‘show/hide columns’ button has been pressed showing how the user
can turn on and off particular columns.

as they arrive. This is often best in terms of data accuracy as the metadata can be entered while the field
notes are still fresh in the mind.

To enable the efficient entry of lots of metadata Tellervo includes the bulk data entry interface. This can be
access from the file menu and is illustrated in figure ??. There are three pages, one each for objects, elements
and samples.

The interface is designed like a spreadsheet so as to be as familiar to users as possible. Each row of the table
represents a new entry in the Tellervo database. Which columns are shown to the user is determined by the
‘show/hide columns’ button on the top right of the screen.

The bulk entry interface also includes support for reading GPS units. By pressing the satellite button on the
toolbar, the user can provide a GPS Exchange (GPX) format file containing the waypoint locations recorded
in the field. Tellervo will add a waypoint column to the spreadsheet with a drop down menu which will
automatically populate the latitude and longitude fields for the record.

It is common for many of the metadata fields to be same in a single field collection. For instance, when coring
trees in a forest, they are often of the same species. Rather than requiring the user to repeatedly type the same
data over and over, the ‘copy row’ button can be used to duplicate a record, and then the user can change the
few fields that are different.

When you have entered all the data you want, you can press the ‘Import selected’ button to write the records
to the database.

4.4 Metadata browser

The metadata browser interface provides a convenient way to view all the metadata within your Tellervo
database. It can be accessed through the ‘Administration’ menu.

The metadata browser contains two parts: a hierarchical representation of all TRiDaS entities in your database
on the left; and a metadata viewer for the selected entry on the right. This interface is also the best method
for fixing mistakes in your database.

Although Tellervo’s database architecture maintains integrity within your data, it does come at the price of
being a little more complicated to fix mislabelled series. For instance, what if you were to measure a series ’B’
and assign it to sample ABC-138-A only later to realize you misread the label and it was in fact ABC-188-A. In
a traditional file-based system, you would probably just need to rename the file you’d just created. In Tellervo
however, you need to redefine the relationship of the series within the database and reassign it to the create
sample. This is best understood when looking at the hierarchical tree in the metadata browser. Hopefully you

22 Tellervo: A guide for users and developers

Images/TellervoSampleCodes.pdf

Figure 4.4: Illustration of the how lab codes are built in Tellervo. Figure courtesy of Charlotte Pearson.

will see that you what you need to do is to move the series from its current position in the database to the
correct one.

The reorganization of data in this way is achieved by right clicking on items in the hierarchical tree and choosing
with ‘merge’ or ‘reassign’.

4.5 Laboratory codes

Tellervo uses lab codes to refer to the hierarchical nature of the TRiDaS entities in the database. The separate
parts of the code a delimited by hyphens and depending on the level of the entity you are referring to, will have
a different number of parts. For instance, if you are referring to a tree (an ‘element’ in TRiDaS terminology)
then the lab code will consist of just two parts: the object code and the element code. See figure ?? for an
illustrated example.

Lab codes are used throughout Tellervo to describe TRiDaS entities. They can also be used in many places
to specify entities that the user would like to choose. For instance, in the database browser, you can type
the lab code for an object, element, sample, radius or series to search the system for all the series that match

Metadata 23

the specified entity. For instance entering ‘ABC-5’ would search for all series associated with element ‘5’ from
object ‘ABC’.

Chapter 5

Mapping

Tellervo includes an integrated open source 3D mapping system (based on NASA’s award winning World Wind
Java SDK) similar to the program Google Earth which you’re no doubt familiar with. As mentioned in the
installation chapter, this mapping system requires an OpenGL 3D capable graphics card. Before you can use
the mapping in Tellervo, you must also have something to map! See the chapter on Metadata (page ??) for
information about adding coordinates to your system.

There are two ways to map data from your database. First of all, you can see a map of all the sites (i.e.
TRiDaS objects) by going to Administration : Site map. This will give you a screen like this:

Figure 5.1: Screenshot showing an example of a site map.

You can also see a map of your current series if you have latitude/longitude metadata by clicking on the map
tab on the main data screen.

26 Tellervo: A guide for users and developers

5.1 Navigation

Figure 5.2: On-screen navigation controls.

You can navigate around your maps using the on screen controls (figure ??), by using your mouse and/or your
keyboard. These controls enable you to explore your location information in 3D such as the example of Mount
Vesuvius in figure ??.

5.1.1 Mouse with scroll wheel

Pan Left mouse button click and drag – all directions
Zoom Use the scroll wheel on the mouse or Left and Right mouse (both buttons) click and drag up and down
Tilt Right mouse button click and drag – up and down or use ‘Page Up’ and ‘Page Down’ on the keyboard.
Rotate Right mouse button click and drag – left and right Note: Crossing the top and bottom half of the

screen while rotating will change direction.
Stop Spacebar
Reset Heading N
Reset all R

5.1.2 Single button mouse

Pan Left mouse button click and drag - all directions. L left mouse button click once to center view.
Zoom Hold ‘Ctrl’ on the keyboard and Left mouse button click and drag - up and down
Tilt Hold ‘Shift’ on the keyboard and Left mouse button click and drag - up and down or use ”Page Up” and

”Page Down” on the keyboard.
Rotate Hold ‘Shift’ on the keyboard and Left mouse button click and drag - left and right
Stop Spacebar
Reset Heading N
Reset all R

Another method of navigating around the map is by using the built in gazetteer. You can enter and place name
or coordinate information into the box at the bottom of the screen and you will fly to the requested location.

5.2 Interacting with data

Each marker on the map represents either a TRiDaS object or element in your Tellervo database. By clicking
on these pins you can get more information from the database (see figure ??).

The example above shows the ring marker is of a site in Napoli called Poggiomarino (code name POG). You
can see the option for searching for all series in the database associated with this site, and also the option for
viewing all the metadata.

Mapping 27

Figure 5.3: Screenshot of a map with information pin expanded

5.3 Map layers

Tellervo comes ready configured with basic map layers, including high resolution satellite imagery and basic
political features. You can turn background layers on and off by going to View : Layers or using the layer
panel at the left of the screen when using ‘Site map’.

Map layers are downloaded on-the-fly so there is likely to be a delay when you initially visit to a new region.
However, up to 2Gb of map data can be cache locally to your hard disk, so on future visits, maps should load
quickly.

5.3.1 Data layers

Data map layers (i.e. site and sample locations) are controlled with the layer list on the left of the screen.
When viewing series, you will have the option of adding layers containing points for all the other series at the
current site, and showing all the sites in the database.

In the ‘Site map’ you can use the ‘Add layer’ button to add data layers of the following types:

All Tellervo objects – this adds a single layer containing all the objects within the Tellervo database.

Tellervo entity from database – this adds a layer containing the location of one record from the Tellervo
database. This is specified by labcode e.g. ABC would add a pin for the site ABC, whereas ABC-1 would
add a pin for the element ABC-1.

Elements from an object – this adds a layer containing all the elements for a specified object. The object is
specified by labcode.

All ITRDB sites – this downloads the location of all sites currently available in the ITRDB database and adds
them as a single layer.

ESRI Shapefile – this enables you to load an ESRI shapefile stored locally on your computer. Tellervo supports
polygon, polyline and point files, although currently it does not enable you to style this data. Data for
a layer is presented using a random color.

Google Earth KML/KMZ file – like the ESRI shapefile option this enables you to load spatial data from
your computer.

28 Tellervo: A guide for users and developers

5.3.2 Web Map Service (WMS)

The mapping system in Tellervo includes support for remote map servers that use the OGC Web Mapping
Service (WMS) standard. If you go to View : Layers : Add remote layers, you will get a dialog with a tab for
each WMS server configured for your system. By default this includes the NASA Earth Observation and Jet
Propulsion Lab servers. By ticking layers in this list you can add data layers to your map.

You can add map data from other WMS servers by clicking the ‘+’ tab and entering the URL of the server
you would like to use. This will give an additional tab with all the available map layers. This server will only
be available for the duration of your current session so will need to be added each time you start Tellervo. If
you would like a particular WMS server to be made permanently available, your Tellervo administrator can do
this (see ‘Managing map services’, on page ?? for further details). Additional WMS servers added in this way
will be available to all users the next time they connect to your Tellervo server.

Your system administrator may host a map server specifically for your lab, for instance, containing high
resolution plans of an archaeological site that you are working on, or environmental data for your study region.
Figure ?? shows an example overlay of sea surfaces temperatures loaded dynamically from the NASA EO server.

Figure 5.4: Map screenshot with a NASA sea surface temperature overlay dynamically loaded from the NASA WMS
server.

5.4 Exporting maps

You can export maps by going to File : Export map as image. For best results, maximize your map window
first. You may also like to turn off various map widgets by going to the View menu. The exported image will
include everything you can see on your map screen.

Chapter 6

Graphing

The graphing component is reused in many places throughout the Tellervo desktop application. The following
description although based on the main graphing screen in Tellervo is largely applicable to all dialogs that
include graphs (e.g. crossdating, indexing and reconciliation).

The main method for graphing your tree-ring data is by choosing an option from the Graph menu. Depending
on the type of series you have open, the options available to you will be different. For raw measurement series,
you will just have the option to ‘Graph active series’. This will give you a simple graph of the current series
that you have open. If you have a derived series open, then you may also choose ‘Graph component series’
which will plot all the series that go to create this series, or ’Graph all series’ which graphs all the component
series as well as the current series.

6.1 Controlling graphs

When newly created graphs are plotted according to the scale on the axes. A feature of Tellervo graphs
though is that they can be manipulated directly on the screen. Both dendrochronology was computerized,
dendrochronologists would plot rings manually on to graph paper. These paper graphs were then placed on
lightboxes and moved around to enable comparisons. The graph function in Tellervo emulates this behaviour
allowing users to click and drag graphs around to test for visual matches.

Figure ?? shows an example graph dialog. The mouse is hovering of the blue measurement series at relative
year 1040 illustrating Tellervo’s highlighting and guide line capabilities. A feature not shown in this screenshot
is the illustration of sapwood rings. When sapwood rings are present the corresponding years on the chart are
denoted via a heavier line.

Figure 6.1: An example graph window con-
taining two undated series of the same sample
on a semi-log graph. Note the legend is visible
with the options for adding or removing series.

30 Tellervo: A guide for users and developers

The layout of graphs can be changed using both the toolbar buttons and menu options. The type of graph
can be changed between a standard line graph, a semi-log graph and a toothed graph using the radio buttons.
The remaining buttons are as follows:

Icons/22x22/haxiszoomin.pngZoom in on the horizontal axis
Icons/22x22/haxiszoomout.pngZoom out on the horizontal axis
Icons/22x22/vaxiszoomin.pngZoom in on the vertical axis
Icons/22x22/vaxiszoomout.pngZoom out on the vertical axis
Icons/22x22/showgrid.pngToggle show/hide the grid lines
Icons/22x22/label.pngToggle show/hide the series labels
Icons/22x22/vaxisshow.pngToggle show/hide the vertical axis
Icons/22x22/spreadvertically.pngSpread the series evening up the vertical axis
Icons/22x22/squeezevertically.pngSet the baselines of all the series to zero
Icons/22x22/fitcharthoriz.pngResize graph to fit horizontally
Icons/22x22/legend.pngToggle show/hide the legend

There are also a number of keyboard shortcuts that you might find useful:

Tab : Cycles through each graph component
Ctrl+W : Increase vertical scale
Ctrl+S : Decrease vertical scale
Ctrl+A : Increase horizontal scale
Ctrl+D : Decrease horizontal scale
Up arrow : Moves selected graph up by 10 units
Down arrow : Moves selected graph down by 10 units
+ : Moves selected graph up by 1 unit
- : Moves selected graph down by 1 unit
HOME : Scroll to first year of series
END : Scroll to last year of series
PAGE UP : Scroll left by one page width
PAGE DOWN : Scroll right by one page width
SPACE : Sets horizontal origin of all graphs to the same value

6.2 Exporting graphs

To export your graphs for use in reports you can go to File : Export plot as PDF file, or File : Export plot
as PNG file. This presents you with a dialog for setting the colors, labels and size of the exported image.
This functionality is due for an overhaul in the future to provide more flexible support for publication quality
graphics.

Chapter 7

Importing and exporting

Importing and exporting of dendro data in Tellervo is provided through the TRiCYCLE libraries. TRiCYCLE
is a universal dendro data conversion application for converting back and forth between 22 supported data
formats (?). The open source libraries that provide the functionality to TRiCYCLE are incorporated directly
into Tellervo providing support for all these formats.

Belfast Apple ODF Spreadsheet
Belfast Archive Oxford
Besancon (including SYLPHE variants) PAST4
CATRAS Sheffield D-Format (Dendro for Windows)
Comma delimited text files (CSV) Topham
Tellervo Legacy TRiDaS
DendroDB TRIMS
Heidelberg (TSAP-Win) Tucson (RWL and CRN)
Microsoft Excel 97/2000/XP Tucson Compact
Microsoft Excel 2007 VFormat
Nottingham WinDENDRO

Table 7.1: List of the twenty-two formats supported by Tellervo. See appendices ??–?? (pages ??–??) for full descrip-
tions.

7.1 Exporting data

Exporting data is initiated by the File : Export data menu. If this is called from the main Tellervo data window,
it will export the current series. If it is called from the Tellervo home screen, then it will present you with the
database browser and allow you to pick one or more series to export. If you use the menu from within the
main data editor then it will export

The export dialog contains two tabs. The first allows the user to choose the format that they would like to
export to and the folder into which to save the result. Note that the user needs to specify a folder not a
filename as many formats are unable to store more than one series in a file. When exporting derived series
such as chronologies, the export dialog may therefore need to create multiple files. The second tab contains
advanced options for altering the behaviour of the exporter:

What to export – This option enables the user to choose between exporting just the current series, or the
current series and all associated series

Grouping – This enables the user to choose to group files into a single export file if possible. For formats that
do not support more than one series in a file, this option is ignored.

Naming – This configures how the output files are named. See section ?? for more details.

Encoding – This specified the character encoding to use in the exported text file. See section ?? for more
information.

32 Tellervo: A guide for users and developers

Figure 7.1: Screen showing a se-
ries that has been exported to Be-
sançon format. In the summary of
the export at the bottom of the
screen you can see the warning to
the user that this format does not
have the ability to represent rela-
tive dates properly.

7.1.1 Naming conventions

The naming convention is used to determine how to name the output files. The naming convention relates to
the filename itself and not the file extension. The file extension is specific to the output format chosen (e.g.
Heidelberg files are .fh and TRiDaS files are .xml).

Numerical – This is the default naming convention. It uses the name of the input data file and appends an
incrementing number if more than one output file is produced.

UUID – This gives all output files a random named based on Universally Unique Identifiers (UUIDs). This is
a 36 character hexadecimal code which due to the astronomically large number of possible combinations
is guaranteed to be universally unique. A typical filename will look like: 550e8400-e29b-41d4-a716-
446655440000.

Hierarchical – This uses the hierarchical structure of the TRiDaS data model to provide a meaningful name for
the output file. It joins together the title of each entity in the file beginning with the project name through
to the series name. For files that contain multiple series, the name will contain details of all the entities
shared by all the series in the file. For example, if a file contains several series from the same sample, then
the file name will be projectTitle-objectTitle-elementTitle-sampleTitle. If the file contains several series
from different samples of the same object, then the file would be projectTitle- objectTitle. If multiple
output files end up with the same name then like the numerical convention described above, the files will
have an incremental number appended to the end. Unfortunately, most input data files do not contain
rich name information so files end up being called unnamedProject-unnamedObject-unnamedElement
etc. This convention is therefore more appropriate when converting from TRiDaS to other formats.

Series code – This convention is only applicable to formats that contain just one series. The file is named
according to the series code.

Series code (8 characters) – Same as ‘Series code’, however the file name is truncated to 8 characters if the
series code is longer.

Keycode – Similar to ‘Series code’ but preferentially uses a keycode (supplied by some file formats) if available.
If a keycode is not provided, then it falls back to using the series code.

Note that some formats (e.g. CATRAS) require the file name to be the same as a field within the file. In
this case the naming convention is overidden, so no matter what convention you specify the filename will be
the same. If you manually rename a CATRAS file you will come across errors when loading it in the CATRAS
application.

Importing and exporting 33

7.1.2 Character sets

Character sets are the mechanism for pairing computer character codes with the character glyphs that we read.
The widely used standard was originally ASCII, but this does not include diacritic characters, and characters
specific to certain languages. There have since been many character encodings proposed (e.g ISO 8859-1 for
Western Europe and ISO 8859-7 for Greece) as well as some that are specific to Windows and Mac operating
systems (e.g. Windows-1252 and MacRoman). The character set that is becoming most widely used today is
Unicode UTF-8. This is capable of representing the vast majority of characters (107,000+) while remaining
backwards compatible for the 128 characters that ASCII is able to represent.

If an incorrect character encoding is used to interpret a file, normally the majority of characters will display
correctly (where the character sets share the same encodings) but more unusual characters will be displayed
incorrectly - typically square boxes or question marks.

The character encoding is set to the default for the operating system you are running. For instance on MacOSX
this will be MacRoman and for Windows it will be Windows-1250. If you know your input file is in a different
encoding you should set it in the input charset box. If your output file needs to be read on an operating system
other than the one you are currently running, then you may like to override the writer charset. Please note
that for certain writers, the character set used is part of the file specification (e.g. TRiDaS must be UTF-8).
In this case your choice will be ignored.

The final complication with regards character sets is the line feed character(s). For historical reasons different
operating systems use different characters to represent a new line. Depending on the software that is used to
read a file, this can cause problems. Tellervo itself will automatically adapt to files with any type of line feed
characters so reading files in Tellervo will never be a problem. When writing out files, Tellervo will use the
default line feed for the operating system you are running, unless you choose a platform specific character set.
For instance if you run Tellervo on Windows and choose a MacRoman writing charset, Tellervo will use Mac
style line feeds.

7.2 Importing data

Importing data into Tellervo is an unavoidably long-winded task. For dendro applications that do not manage
the underlying data and metadata, the task of opening up legacy data files is much simpler. In Tellervo,
however, we are more fastidious about our data. Importing legacy data files is not just a matter of reading the
ring width values, but also interpreting the metadata so that it is standardized, clean and matches our high
data integrity standards. As you can imagine, this comes at the price, although definitely a price worth paying!
Before continuing, you need to have a basic understanding of the TRiDaS data model. See chapter ?? (page
??) for more information.

7.2.1 The import dialog

You can launch the import dialog by going to File : Import and then choosing the format that your file is in.
If you are unsure, you can use appendices ??–?? (pages ??–??) to help you. You may also like to download
TRiCYCLE∗ which includes a file identification tool in it’s help menu.

Once you have picked the file you’d like to import, an import dialog screen similar to that shown in figure ??
is displayed. The dialog is divided into three main sections: TRiDaS hierarchy (top left); Data viewer (top
right); and Warnings panel (bottom).

The TRiDaS hierarchy panel contains a representation of the file being imported according to the TRiDaS
data model. This table also contains a status column to indicate whether input is required from the user. The
two main status options are ‘Stored in database’–to indicate that the entity is already stored in the Tellervo
database–and ‘Attention required’–to indicate the entity needs to be cleaned up by the user.

∗TRiCYCLE is available from http://www.tridas.org/tricycle

http://www.tridas.org/tricycle

34 Tellervo: A guide for users and developers

Figure 7.2: Screenshot of the import dialog. The screen is divided into three main sections. The top left contains a
TRiDaS representation of the data file that is being imported. The top right panel contains the metadata gleaned from
each of these TRiDaS entities. At the bottom of the screen is a table containing any warnings associated with the
conversion. In this case there are no warnings.

The data viewer panel on the top right of the dialog contains three tabs. The first gives a standard text editor
representation of the file being imported. Note that when errors are detected in the file, Tellervo will highlight,
where possible, the portion of the file that is causing the problem. The second tab contains a metadata editor
for the current TRiDaS entity. The third tab contains a viewer for ring width values if the entity selected is a
measurment series.

The warnings panel at the bottom of the screen contains a list of any warnings that have occurred during
the conversion process. There can be many issues when reading legacy data files, for instance some files do
not contain information on the measurement units used. In this case Tellervo will make an assumption and
warn the user. It is important to understand the assumptions and warnings provided by Tellervo in this panel
otherwise erroneous (meta)data may be imported.

7.2.2 Importing when entities are already in the database

If you already have the object, element, sample and radius entities entered in your Tellervo database for the
series you are trying to import the import process largely involves picking the relevant entities from the database.

First of all, click the most senior entity in the TRiDaS hierarchy on the left which has the status ‘Attention
required’. The dialog will update and the limited metadata that Tellervo has been able to glean from the file
will be shown on the right. As we already have all the information we need about this entity stored in the
database, we simply need to replace this ‘skinny’ entity with the rich one we have in the database. This is
down by clicking the ‘Change’ button in the metadata viewer on the right and then by choosing the correct
entity from the pull down menu. Click the choose button and the swap will be complete. Notice now that
in the TRiDaS hierarchy that the status for this entity is changed to ‘Stored in database’. You can continue
working down the hierarchy in a similar way.

Importing and exporting 35

7.2.3 Importing when entities are not in the database

If you are importing a file that contains entities that you don’t already have stored in your database, then
you will need to clean them up and save them. Select the most senior entity that needs to be imported in
the TRiDaS hierarchy panel. The metadata gleaned by Tellervo from the legacy file will be previewed in the
metadata panel on the right. Next, click the ‘lock’ icon at the bottom of the metadata panel and the metadata
will become editable. You will then need to spend some time filling out and cleaning up the metadata for this
entity.

An important part of the import process is the standardization of the metadata. Take for instance the example
of the taxon. Most legacy files have some method for indicating what species a file is about, but most do so by
allowing the user to type in a free text field. The TRiCYCLE libraries that Tellervo uses are able to read such
fields but the red oak (Quercus rubra) may be represented in many ways: oak, red oak, Oak, Quercus, Quercus
sp., Quercus rubra, QUER etc, not to mention the scientific synonyms for the species e.g. Quercus acerifolia,
Quercus ambigua, Quercus angulizana to name but a few. Many users would know that these represent the
same species, but if you were to query your database for Quercus rubra, you would miss records stored under
the other names. It is therefore essential to standardize them to a single dictionary of terms. In the case of
species names, Tellervo use the Catalogue of Life (?). There are a number of similar enumerated metadata
fields in Tellervo, each indicated by a pull down menu. When importing, these fields will be populated with the
non-normalized term read by Tellervo, but to successfully import the entity into the database, you will need to
choose the corresponding ‘controlled vocabulary’ term from the pull down menu.

Once you have cleaned and normalized your metadata, you need to press the ‘Save changes’ button to upload
the entity into the database. You will be provided with an error message if you have missed any mandatory
fields, or if you have not normalized all the data to terms stored in the Tellervo dictionaries. Once you have
successfully saved the entity, the TRiDaS hierarchy on the left will be updated so the status reads ‘Stored in
database’. You will then need to work your way through the remaining entities to finish importing the file.

7.2.4 Speeding up the process

Manually choosing the relevant entry for each entity is quite a frustrating and time consuming task. When
importing a file containing multiple series, the task is compounded by the fact that Tellervo will often place
the series into separate hierarchies. Unfortunately, many legacy file formats do not contain enough information
to enable Tellervo to determine whether they are from the same or different objects. To be on the safe side,
Tellervo therefore places them in separate ‘unknown’ objects. Rather that manually specifying the correct
object repeatedly, you can use the ‘merge objects’ button to do this for you. You need then only pick the
correct object from the database once.

7.3 Exporting graphs

7.4 Exporting maps

Chapter 8

Curation and Administration

8.1 Laboratory workflow

Tellervo includes a number of functions to assist you with the curation of your physical sample collection. To
understand how these are designed to assist users, we must first consider the workflow within a laboratory.

In research laboratories, samples generally come to the lab in large batches following field collection. In this
case the typical workflow may be as follows:

1. Collect samples and record field notes as accurately as possible
2. On returning to the lab enter field notes as soon as possible into the ‘bulk data entry’ interface
3. Print sample barcode labels
4. Prepare physical samples and label with barcodes
5. Assign samples to storage boxes
6. Measure samples, using barcodes to recall metadata from database
7. Crossdate samples / build chronologies
8. When all samples from a box are completed register box as archived and then store

For commercial labs offering dendrochronological dating as a service, samples more likely to arrive in smaller
batches. In this case, the bulk data entry interface may not be the most efficient method for entering metadata.
In this case the user may simply prefer to use the File : New method for each sample.

Either way, the concept behind the curation of a collection in Tellervo revolves around the accurately recording
as much metadata about a sample as possible, then labeling the physical sample with a label containing a
barcode for Tellervo and sample code for the user. By entering a sample into the database as soon as it enters
the lab, it can be traced throughout the workflow. When a chronology is built, it is easily to quickly and
efficient locate all samples that have been used. By assigning samples to boxes, groups of similar samples (e.g.
from the same site) can also be easily stored together and located quickly and efficiently.

8.2 Barcodes

Barcodes allow you to keep track of what samples you have and where they are stored. Although it is not
essential to use the barcode functions, we strongly suggest you do because they save time and money, but most
importantly they greatly reduce the scope for erroneous data entry. For instance, when measuring a sample a
user simply scans its barcode and all the relevant metadata is retrieved from the database, rather than relying
on them to enter data manually. Barcodes have been routinely used in the retail industry since the 1980s.
They can be equally as useful in dendrochronology laboratories.

Tellervo creates and reads barcodes for samples, measurement series and boxes. Each barcode encodes the
unique identification code stored in the Tellervo database for each of these entities. Due to Tellervo’s use of
universally unique identifiers (UUIDs), these codes are guaranteed to be unique opening the opportunity of
labs to loan samples, much like libraries do with books. There are many styles (or ‘symbologies’) of barcodes

38 Tellervo: A guide for users and developers

in use today, but Tellervo uses one of the most common (Code 128) which is supported by the vast majority
of barcode readers. For a detailed discussion on the specifications of the Tellervo barcode see section ??.

Basic barcode readers are now cheap and widely available, with basic devices retailing for a few tens of dollars.
Most are characterized as ‘keyboard interface devices’ and work like an automated keyboard, typing in a string
of characters when a label is scanned.

Within the Tellervo application, whenever the user is required to specify a box, sample or series, they have the
option of typing the human readable lab code or scanning the barcode. By using the barcode, the user can be
sure they are not entering typographic errors so we recommend using barcodes whenever possible.

The most important barcode is the label for the physical wood sample. These are easily generated through the
Administration : Labels : Sample labels menu entry. Currently the layout of these labels is fixed, but in the
future we aim to provide different styles.

8.2.1 Sample labels

Before labels can be generated, metadata entries the sample level must have been made in the database. This
is typically done using the ‘bulk data entry’ interface (see page ??). If samples are already in the database,
the user needs to select the object of interest in the label creation dialog to see all the available samples. It is
then just a matter of selecting the samples of interest and moving them into the ‘selected’ column. Once the
list is populated (samples from multiple objects can be included), then you can either click ‘Preview’ to see a
PDF of the labels, or ‘Print’ to print directly.

Figure 8.1: An example of a sample barcode produced by Tellervo for the Cornell lab. Note the label also includes the
human readable code for the sample.

The current label style is designed to fit on standard core mounts and most samples. There are no widely
available die-cut labels that fulfill this need, so the labels are intended to be printed on archival grade full page
sheet labels (e.g. Avery® layout 6575), and then manually guillotined.

8.2.2 Box labels

The procedure for printing box labels is the same as for samples. Samples must have already been assigned to
boxes before the label is printed (see section ?? for details). To print (or preview) box labels go to Administration

: Labels : Box labels. The label style is designed to be printed on 5′′× 8 1
8

′′
labels, two per sheet such as the

Avery® 6579 layout. An example is shown in figure ??.

Until dynamic label styles have been implemented, box labels will print one per page. To make
use of the second label on the page, the same sheet should be fed through the printer a second
time.

8.2.3 Series barcodes

Series barcodes are printed at the top of a standard series report (see figure ??). These are produced through
the File : Print, or File : Print preview, menus.

8.3 Storage boxes

Tellervo uses the term ‘box’ to refer to the collection of samples you archive. Many labs (including Cornell)
use cardboard bankers boxes to store samples once they are completed, but the same box concept could refer
to draws or shelves in your collection.

Curation and Administration 39

Comments:
No comments recorded

GR38
BOX a3b8761c-bfdf-11de-a207-e37bbc4501c3

Created: October 23, 2009 10:23 AM
Label updated: July 12, 2011 9:40 AM

Object Elements # Samples
KRR 1 1
KSR 1-12 14
KSY 1-14 14
KTM 1-13 13
KYP 1 1

Grand Total 43

Figure 8.2: An example of a box label from the Cornell collection. The label provides a human readable name for the
box (GR38), a barcode for accessing the box details within Tellervo, and a summary of the samples contained within
the box.

8.3.1 Creating and editing boxes

Records for boxes in the system are created and edited through the Administration : Curation : Box details
menu. To editing an existing box, you can scan the barcode label on the box, or select from the list. To create
a new box, click the ‘Create new box’ button and enter its details. There is no restriction on what boxes should
be called, but it is probably easiest if you use some sort of numerical sequence to assist with organizing the
boxes in your store. At Cornell, we use a two part name for each, the first being the year of collection, the
second being a sequential number (e.g. 2009-11).

The contents tab lists all the samples that have been assigned to this box. To add new samples, simply click
the ‘Add sample to box’ button and scan the sample’s barcode.

8.3.2 Inventory

An important feature of any collection management system is the ability to perform an inventory on the
collection. Even with the most robust system, samples will always go astray so its important to be able to
periodically check that the boxes contain what you expect.

The ‘Contents’ tab of the Box details dialog contains a feature to assist with this. Next to the list of samples
that are recorded as present, there is a temporary checklist column. By checking the boxes for each sample
actually stored in the box it is easy to see which samples have been mislaid. If the ‘Mark unchecked as missing
from box’ button is then pressed, the date and time the discrepancy was noted is then recorded in the comments
field for the box.

40 Tellervo: A guide for users and developers

Ring widths:

Wood Completeness:
- Pith is incomplete.
- A total of 54 rings were measured.
- Heartwood is incomplete
- Sapwood is absent
- Bark is absent.

Interpretation:
- The first ring of this series begins in relative year 1001.
- The pith of this radius was laid down in exactly relative year 1001 and died after relative year 1055.

Element and sample details:

- Taxon: Quercus

- Element type: Post

- Sample type: Cross section

C-YMT-1399-A-A-2
Istanbul, Yenikapi Metro

SERIES 191dd500-af8b-11df-9b25-1bfba0ced0da

Created: August 24, 2010 10:23 AM
Last Modified: August 24, 2010 10:23 AM

Measured by: Leann Canady
Supervised by: Charlotte Pearson

1/100th
mm

0 1 2 3 4 5 6 7 8 9

1001 132 79 55 160 111 172 198 177 130

1010 176 166 160 179 255 236 232 273 188 191

1020 182 109 113 92 73 75 69 84 98 121

1030 123 146 239 177 177 198 196 230 236 241

1040 208 161 161 206 246 253 173 189 164 185

1050 149 112 143 145 108

= Single Pinned = Double Pinned

Figure 8.3: An example of a report showing barcode and basic metadata about a series.

Curation and Administration 41

8.3.3 Checking boxes in and out

Tellervo includes function for checking boxes in and out of a store, much like when a book is borrowed from a
library. The Administration : Curation : Check out box from store and Administration : Curation : Return
box to store menus do just this. You can either scan the box barcode or select the box from the drop down
menu. These options record when a box is checked out/in and by whom. These details can be seen by users
in the box details dialog.

8.3.4 Locating samples

As you might expect, Tellervo also includes a function for locating your physical samples. This is available in
the Administration : Curation : Find a sample menu. There are three methods for locating a sample: via
barcode; via lab code; and manually by object/element/sample.

If you have the sample in your hand and you simply want to know which box it should be returned to you can
scan the barcode. If you are looking for a sample and you know its lab code then you can enter this instead.
Alternatively, you can use the drop down menus to search for one or more samples at once. For instance, you
can locate all the samples for a particular object and element.

Chapter 9

Indexing

Trees tend to put on big rings when they’re young, and smaller rings when they get older. Some trees put
on very large rings, while others put on very small rings. These variations in growth can make it difficult
to crossdate samples. Some dendrochronologists therefore prefer to index or normalize their ring width data
before combining into chronologies.

Indexing is a manipulation you can perform on your data to make it easier to crossdate.

The procedure for indexing is as follows:

1. You open a series (raw data)
2. You ask Tellervo to index it
3. Tellervo shows you some possible curves
4. You pick a curve (based on its graph, statistical scores, and your expectation of how the tree is growing)
5. Tellervo converts each year’s ring width to a ratio of actual growth to expected growth for that year
6. You save the series (indexed data)

Indexing changes the units of a dataset. A raw sample has units of hundredths of a millimeter (0.01 mm) or
microns. An indexed sample has units of parts per thousand (0.1%, or ‰).

This doesn’t cause a problem with crossdating. The t-score normalizes all samples as part of its test, and the
trend only cares if the values are increasing or decreasing. For more information on crossdating and chronology
building, see chapter ??. It does, however, cause a problem with ‘summing’ since summing needs to take the
average (what’s the average of 1mm and 75%?). Therefore, the samples in a sum must be either all raw, or
all indexed.

9.1 Types of index

There are a total of six different indexing methods available in Tellervo:

9.1.1 Exponential Index

This is the most commonly used index as it matches the way trees typically grow. Quickly when young and
then gradually slower. An exponential index is therefore by far the most common index you’ll use as 9 times
out of 10 this will be the best choice.

This index tries to fit an equation of the following form to your data, searching for the best values of a, b and
p.

I y = a+ be− px

This is sometimes called a negative exponential index, because the exponent is negative. Tellervo
doesn’t require that the exponent is negative, but if it’s not, using this index probably isn’t such a
good idea; it means the tree is generally getting bigger, not smaller.

44 Tellervo: A guide for users and developers

The least-squares algorithm used comes from ?; the matrix solving function comes from ?.

Sometimes the exponential index does a lousy job. If a tree is living in a crowded area and the trees around it
get cut down, suddenly it has much better growing conditions, so it might grow faster as it gets older, instead
of slower. If you tried to use an exponential curve on a tree like this, it would exaggerate this growth, and
useful data would get flattened out.

The result is you’re looking at the growing conditions of this one tree, so it’s not going to crossdate as well.

Alternatively, imagine you are working on a tree with a fire scar that has a few very large rings. An exponential
index wouldn’t take much notice of this, because most of the sample is still shaped like an exponential curve,
but when you applied it they would be grossly out of proportion. For these types of samples, there are other
indexing algorithms available.

9.1.2 Polynomial Index

When you ask Tellervo to perform a Polynomical Index it tries to fit a polynomial curve to your data using the
following equation:

I y = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x + a0

You decide what degree polynomial, n, to use and Tellervo automatically finds the best values of a0, a1 . . . an,
to fit your data.

9.1.3 Horizontal Line Index

This only changes the magnitude not shape of the curve and is used when you would link to combine raw and
indexed data together. It is a special case of polynomial where the horizontal line is equal to the average value.

I y = xavg

This index is not used for crossdataing because dividing each value by the same value doesn’t change the shape
of the curve, only its magnitude. A horizontal line index is, however, useful because every element in a sum
must use the same units, either raw or indexed. Therefore if you want to include a raw sample with an indexed
sample then a horizontal line index can be used to convert the raw sample without otherwise altering the shape
of the curve.

9.1.4 Floating Index

This is a running average of the 11 surrounding years. The adaptive index is generally used as a ‘last resort’ when
both exponential and a high-degree polynomial have failed. It is simply the average of the eleven surrounding
years:

I indi = 1/11(data− i− 5 + datai−4 + . . .+ datai+4 + datai+5)

This index was originally called floating average, probably in reference to the fact that the index curve “floats”
around, not following any explicit y = f(x)-type formula. But people tended to call it floating, and then
floating-point, which means something very different. You might still hear people calling this index by these
other names.

9.1.5 High-Pass Filter Index

The high-pass index is a more general case of the adaptive index. Instead of simply taking the average of 11
values, it takes a weighted average. It’s an example of a “high-pass” filter because high-frequency signals can
pass through, but low-frequency signals are filtered out.

The default is “1-2-4-2-1”, meaning:

Indexing 45

I indi = 1/10(datai−2 + 2·datai−1 + 4·datai + 2·datai+1 + datai+2)

This comes from ? who used it as a discrete filter before moving to a cubic spline. Note that almost half
(4/10) of the computed value is simply its old value. The high-pass index is nearly the same as the input, so
the χ2 values are usually the lowest, therefore do not choose this index solely on a low χ2 value.

9.1.6 Cubic Spline Index

Cubic splines are a very specific type of high-pass filter. A cubic spline curve is created by combining a collection
of cubic (3rd degree polynomial) functions.

There are many methods for constructing cubic splines through a dataset. The algorithm used by Tellervo has
a parameter, s, which controls how tightly the spline fits the data. A lower value fits the data more tightly, a
higher value fits the data more loosely. Therefore, s=0 fits the data exactly while s=1 is a simple line. A good
starting point for dendro data seems to be around s = 1x1016.

Cubic splines were first used for dendro by ? using an algorithm from ?.

You can change the s-value used for the subic spline in the preferences. You might use a cubic spline in the
same cases you would use a high-pass filter e.g. when the sample doesn’t generally follow an exponential or
polynomial curve very well, perhaps due to a fire scar.

9.2 Indexing data

To index your data, first you need to open the series you would like to index. Next choose Tools : Index to
display the indexing dialog (figure ??).

Figure 9.1: Indexing dialog showing the original data in blue, the exponential index of this data in green, and the
normalized data in red.

From the indexing dialog you can then choose which type of index to apply to your data. The table on the
right shows the available options along with the χ2 and p values to help you choose the correct index to use.
The graph shows your original data, the index line and the result of applying the index to the data and changes
dynamically as you pick between different indexing methods. Once you have decided which index you want to
use, select it, and click OK ensuring that you have given your data series a new version number.

Chapter 10

Crossdating and chronology building

All algorithms work in pretty much the same way. There’s a “fixed” sample, and there’s a “moving” sample.
Imagine you have printouts of their graphs on translucent paper. The fixed graph is taped to a table, and you
can slide the moving sample left and right. This is actually how it was originally done, on graph paper, with
one inch per decade. Start with the moving sample to the left of the fixed sample, overlapping it by 10 years.
Look at how well the graphs match: this is the first score that’s computed. Slide the moving sample to the
right one year and so on until you reach the end.

You could do it all simply by moving graphs and eyeballing the crossdates like this but there are hundreds of
sites and millennia of chronologies you’ll want to crossdate your samples against, so that would take a while.
Tellervo has a few algorithms to find likely crossdates almost instantaneously. They aren’t perfect, though,
and all crossdates should be inspected visually to ensure they are a good fit.

10.1 Algorithms

Tellervo includes a total of five different algorithms for crossdating:

10.1.1 T-Score

The t-score is the classic crossdate. Unfortunately, every dendro program seems to have a slightly different
implementation of t-score, so the numbers you get from Tellervo might not be exactly comparable to the
numbers from other programs.

The version Tellervo uses is based on the algorithms given in ?, though with some apparent bugs corrected
(Ken Harris pers. comm.). In the following equations, x0, x1, x2, . . . are the data of the fixed sample in the
overlap, y0, y1, y2, . . . are the data of the moving sample in the overlap, and N is the length of the overlap.

The first step is to make each dataset bivariate normal by replacing each value with the mean of the values
around it, and then taking its natural logarithm. The preparation for the t-score is therefore done as follows
and is done to both the fixed and moving series:

I xi ← xi−2+xi+xi+1+xi+2

5

I xi ← ln(xi)

The student’s T computation is then done as follows:

I sxy = Σxiyi −N(xi − xavg)(yi − yavg)

I sxx = Σx2i −N(xi − xavg)2

I syy = Σy2i −N(yi − yavg)2

I r =
sxy√

(sxxsyy)

48 Tellervo: A guide for users and developers

I t = r
√

N−2
1−r2

The t-score is an explorative statistic. There is no univerally accepted threshold above which a t-score is
regarded as significant, however, ? suggest a value of 3.5. For more information see ?.

10.1.2 Trend

Trend is another popular crossdate statistic. It computes the percentage of years with the same trend (going-
up- or going-down-ness). Scores greater than 60%-70% are good. Trend is also referred to as ufigkeitsko-
Gleichläeffizient, Gleichläufigkeit and Eckstein’s W.

The trend is the simplest crossdate. For each sample, it computes the trend of each 2-year interval (1001-1002,
1002-1003, and so on). The trend of a 2-year interval is simply whether the next ring is larger, smaller, or the
same. The trend score is the percentage of intervals in the overlap which are the same. For example, a 75%
trend (a very good score, by the way) means that for 75% of the intervals in the overlap, both samples went
up in the same years and down in the same years.

If one sample stays the same, and the other increases or decreases, Tellervo considers that to be halfway
between a same-trend and different-trend, and gives it half a point. Trend is a “non-parametric” algorithm,
because it only takes into account if a given ring is bigger or smaller than the previous one, not by how much.
To the trend, a drop of “100 1” looks exactly the same as a drop of “100 99”. Two completely random samples
will have a trend of 50%, on average. So you’d expect a trend must be greater than 50% to be significant.

According to ?, a trend is significant if:

1. tr > 50% + 50√
N

– For example a pair of samples with a 50-year overlap needs a 50 + 50
√

50 = 57.1%

trend to be significant, but at a 400-year overlap need only a 50 + 50
√

400 = 52.5% trend. In practice,
however, this doesn’t tend to work terribly well. Using this scheme, there are typically about three times
as many “significant” trend scores as t-scores, and users want this narrowed down a bit more. So take
σ = 3 and use:

2. tr > 50% + 50σ√
N

– This gives about the same number of significant trend scores as t-scores.

Trends are also used in reconciliation. After they’ve been reconciled, both readings of a sample should have
100% trend.

10.1.3 Weiserjahre

The Weiserjahre algorithm is used for crossdating summed samples (chronologies) against single samples. All of
the algorithms that have been mentioned so far only compare the ring widths. This works fine for raw samples,
but when crossdating summed samples, there’s a lot more information available, namely, the Weiserjahre data.
Wouldn’t it make sense to count a [20] 19× 1 ring more heavily than a [1] 1÷ 0 ring? 19 out of 20 samples
think it’s an increasing year, not just 1.

This is what the Weiserjahre cross does: for each possible overlap, it starts by counting the number of significant
intervals of the master for that overlap. A significant interval is one with at least 3 samples, where at least 75%
of them have the same trend. Then it computes the percent agreement (like the trend) between the master
and the raw sample for only those significant years of the overlap. Of course, for the trend of the master, it
doesn’t use the trend of the master; it uses the trend of the majority of its elements. They’re usually the same,
but not necessarily.

Another way to think about the Weiserjahre crossdate is: it’s like a trend, but ignoring years where the sum
has only 1 or 2 samples, or where there isn’t an overwhelming trend in the sum. Also like the trend, the results
are given as a percentage.

Crossdating and chronology building 49

10.1.4 R-Value

The R-value, or correlation coefficient, is a crossdate which you’ll almost never use. It’s not terribly useful to
dendrochronologists, but statisticians might want to know its value, so Tellervo makes it available.

The R-value is used in the T-Score, the T-score being defined in terms of the r-value and the overlap, N. If
you look at the equations for calculating a T-Score you will see on the penultimate line:

I r =
sxy√

(sxxsyy)

An r-value can range from 0.0 (no correlation) to 1.0 (perfect correlation).

10.2 Crossdating series

10.3 Managing chronologies

Chapter 11

The Tellervo server

For basic day-to-day running of the Tellervo server, you simply need to make sure that the server is running. All
other interaction and managment (creating users, granting permissions, accessing data) is done through the
Tellervo desktop application. This section, however, outlines a number of aspects of the server that advanced
users may find useful.

11.1 Backing up and restoring your database

As with any computer system it is important for you to back regular backups of your data to guard against
hardware (as well as human!) errors. The two main methods for doing this are outlined below:

11.1.1 Backup whole Virtual Appliance

The simplest method is to make a copy of your entire Virtual Appliance, but this does have a number of
drawbacks. The first is that you need to shut down your server before you can make the backup so this is only
possible if server ‘downtime’ is not a problem for your lab. The second drawback is that it makes a copy of
your entire server including the whole operating system, therefore each backup takes a lot more space.

1. Open VirtualBox
2. If you server is running you will need to do a full shutdown. From the server console type sudo shutdown now

or alternatively you can close the console window and select ‘Power off the machine’. This second method
is not recommended though as it is like pulling the power plug from the virtual computer.

3. Select your virtual machine in the list on the left and go to File : Export Appliance.
4. Follow the wizard, specifying a file where you’d like to back the server up to. Keep in mind that this will

contain a complete copy of the server (including operating system) so could be 1Gb or more.

11.1.2 Restoring a Virtual Appliance backup

If you have followed the instructions in section ?? to backup your Virtual Appliance the steps to restoring your
server are very similar to how your initially installed it. Simply open VirtualBox, then go to File : Import
Appliance and select the backup file that you made. Follow the wizard and it should restore your server. You
can restore onto the same computer that was originally running the virtual machine (remember to give it a
new name though if this is the case) or alternatively to any other computer with VirtualBox installed. This
method can therefore be used to share entire databases.

11.1.3 Backup PostgreSQL database

The more standard way of backing up your database is to do a dump of the PostgreSQL database itself into a
large text file. This is a little more involved, so it is only recommended if you are familiar with command line

52 Tellervo: A guide for users and developers

and/or Linux. You can create the file with a command like the one below, but you should read up on pg dump
so that you understand the possible options that you can use.

pg dump -f /folder/and/file/to/make.sql name of corina database

For example the following line will backup the database called ‘corina’ into a file called backup.sql in the tmp
folder. Keep in mind that the tmp folder is cleaned each time the server is booted.

pg dump -f /tmp/backup.sql corina

11.1.4 Restoring a PostgreSQL database

To restore your database from a backup file you can use the standard PostgreSQL command line tool psql to
populate an empty database:

createdb corina new

psql corina new < /tmp/backup.sql

11.2 Upgrading the server

Upgrading the server requires you to type a few commands into the Linux command line. First of all please
ensure that you back up your Virtual Appliance and/or database before continuing. We will always endeavour
to make sure that nothing happens to your database, even if the upgrade fails for some reason (in which case
the system should roll back to your previous version again), but things don’t always go to plan.

1. Log in to your Tellervo server console

2. Type the following commands:

cd /tmp

wget http://url.of.new.server.file

dpkg --install corina-server-X.X.X.deb

The URL of the new file can be obtained from the Tellervo website.

It would be possible for us to set up an mechanism which server administrators could opt-in to to upgradie
Tellervo servers automatically. We may deploy this in the future, but we’d rather keep the process of upgrading
as a conscious decision for the foreseeable future, but especially until we are confident that the upgrade process
will not compromise your database.

11.3 Graphical Interface to the Virtual Appliance

For those of you that are unfamiliar with Linux, the basic command line prompt is not likely to be very
comfortable. If you are interesting in looking at the server in more detail you may therefore prefer to install a
full graphical interface. Unlike Windows, there are a number of different graphical interfaces (or desktops) to
choose from in Linux, the most popular being Gnome and KDE. To install one of these you need to type one
of the commands listed below. The first line installs Gnome and the second KDE. Windows users that are new
to Linux may find KDE more familiar, but Apple users may be more at home with Gnome.

sudo apt-get install ubuntu-desktop

sudo apt-get install kubuntu-desktop

The Tellervo server 53

11.4 Security

The basic installation of the Tellervo server includes the standard configuration for Apache, PHP and Post-
greSQL. Although these products are considered secure by default, there are a number of measures that can
be taken to make them more so. If your server is only accessible within your local intranet (e.g. behind a
robust firewall) then you may not feel it necessary to modify the standard setup. Precautions may be deemed
more important if you server is accessible from the internet. In this case it would be wise to contact your local
network administrator for further information.

11.4.1 Usernames and passwords

There are a number of default usernames and passwords setup on your server. If your server is accessible for
the internet we strongly advise you to change these defaults and anyone with knowledge of the Tellervo server
could access and compromise your machine.

System user - these are the credentials you use to log in to the command prompt in your Tellervo Virtual
Appliance. By default the user is ‘corina’ and the password is ‘w3l0v3tr33s’. To change this log in to
the command prompt and type passwd and follow the instructions. There is no easy way to recover this
password if you loose it.

PostgreSQL database user - these are the credentials used by the webservice to read and write to the
database and are set by the database administrator during the initial configuration of the Tellervo server.
You are only ever likely to need this again if you want to directly access the database from a third party
tool like PGAdminIII. You can reset this password from the Tellervo Virtual Appliance command prompt
by typing corina-server --reconfigure

Tellervo admin user - these are the admin credentials that you use to log in with in your Tellervo desktop
application. Be default the user is ‘admin’ and the password is ‘qu3rcu5’. You should change these the
first time you open the Tellervo desktop application by going to Admin : Change password.

11.4.2 Authentication and encryption

Tellervo uses a relatively sophisticated method to ensure that unauthorised users cannot access the Tellervo
database through the webservice. It is loosely based around http digest authentication and uses a challenge
and response scheme. This makes use of cryptographic hashes (a relatively short digital fingerprint of some
data but which cannot be decompiled to retrieve the original data) and nonces (a pseudo-random string used
just once). All hashes used in the Tellervo webservice use the MD5 algorithm. This decision will be periodically
reviewed to ensure that MD5 is the most appropriate and secure algorithm to use. Whilst an MD5 hash of a
short phrase can be compromised, the length and randomness of the original data means with current cracking
techniques this is essentially impossible. For a complete description of Tellervo’s authentication procedure see
section ??.

The default Tellervo server setup, however, uses standard HTTP protocol to communicate between the server
and the desktop application. This is the same protocol used for the majority of web pages on the internet and
a determined hacker could eavesdrop on this communication. Depending on how important and private you
perceive your data you may choose to use Secure Socket Layer (SSL) to encrypt this communication. This is
the same technology used by websites such as online banking. To make full use of this upgrade in security you
will however also require a SSL certificate from an official licensing authority. These certificates typically cost
several hundred dollars per year.

11.5 Directly accessing the database

Although the Tellervo database is designed to only be accessed by the Tellervo desktop application via the
Tellervo server’s webservice, you may decide that you’d like to directly access the database yourself. For
instance, you may like to write complicated SQL queries to probe your database in ways not currently supported
by the Tellervo desktop client.

54 Tellervo: A guide for users and developers

Any changes made to the database may have drastic consequences. We strongly recommend
that you never write changes directly to the database as this can cause loss of data and corrupt
future upgrades to Tellervo.

11.5.1 PGAdminIII

One of the easiest ways to access the PostgreSQL database is through the application PGAdminIII. This
is a cross-platform open source application for communicating with PostgreSQL databases. You can install
PGAdminIII on your desktop computer and access the remotely running database using your database user
credentials.

For security reasons by default the Tellervo database cannot be accessed from computers outside of the Tellervo
server. The may sound peculiar because the webservice can be accessed from computers anywhere on the web,
but the database is actually accessed by the webservice, which is essentially a user running on the same
computer as the database. To access the database directly from a remote computer you must therefore open
access first. This is done by adding an entry to the file ‘/etc/postgresql/9.1/main/pg hba.conf’. My personal
command line text editor of choice is vim, but it is a little confusing to the uninitiated. If you are unfamiliar
with command line text editing you are probably best to use pico:

sudo pico /etc/postgresql/9.1/main/pg hba.conf

Scroll down passed all the comments, to the bottom of the file. Add the following line:

host all all IPADDRESS/32 md5

Make sure you replace IPADDRESS with the IP address of the computer you are trying to connect from. This
is just one style of pg hba.conf entry. There are many others which allow you to restrict to specific users,
computers, networks etc. See the online PostgreSQL documentation for more details. Save your changes and
exit by doing CTRL+X, then restart the Tellervo server:

sudo corina-server --restart

You should now be able to access your database through PGAdminIII. To do this open the application and
go to File : Add server. Specify your server’s IP address is the host field, and your database username and
password.

11.5.2 ODBC

It is also possible to connect to your Tellervo database via an ODBC connection. This allows limited access
to the database from a variety of database applications including programs like Microsoft Access for which
further details are given here. To use ODBC you will need to install the PostgreSQL ODBC driver (http:
//www.postgresql.org/ftp/odbc/) on your desktop computer.

Once you’ve installed the driver you can then open a blank database in Access and go to Files, Get external
data then Link tables. In the file dialog box change the file type to ODBC Databases(). Next, select the
PostgreSQL Unicode driver, then fill out the server details. You should then be able to open the tables and
views from the Tellervo server database directly from within Access as if they were local tables. Be warned
though that Access and ODBC have many limitations compared to PostgreSQL, especially with regards data
types. For this reason we strongly recommend using this for read only purposes. Using the ODBC connection
to write changes to your PostgreSQL database is quite likely to cause serious issues.

11.5.3 PSQL

The final, and most advanced method is to use the psql client on your server. This is a command line client
which can be used to interrogate the database. If you’re not already familiar with psql it is unlikely that this
is a good method for you to use!

http://www.postgresql.org/ftp/odbc/
http://www.postgresql.org/ftp/odbc/

The Tellervo server 55

11.6 Tellervo server configuration

11.6.1 Standard server configuration

The Tellervo server can be configured using the command line tool that is installed on both the Virtual Appliance
and native server installs. It is the same tool that is run at the end of the native server install, but can be
run at any time to reconfigure or test your system. It must be run with superuser privileges therefore sudo is
required before the command. For instance to get help on usage type:

sudo corina-server --help

Figure 11.1: Example of the output from the corina-server
test.

Possible options to pass the server are:

I ‘--help’ – Display a list of the possible options
I ‘--version’ – Display the version of the

Tellervo server webservice and database cur-
rently installed

I ‘--test’ – Run tests on the current configu-
ration

I ‘--configure’ – Configure the Tellervo
server from scratch.

I ‘--reconfigure’ – Reconfigure the Tellervo
server. This should be done if the database
name or user credentials change, or if the IP
address of the machine is altered.

I ‘--start’ – Start the Tellervo server
I ‘--stop’ – Stop the Tellervo server
I ‘--restart’ – Restart the Tellervo server

Figure ?? shows an example of asking the server to
test the configuration, with all tests passed successfully.

The command line tool stores the majority of settings in the config.php file stored in the base directory of your
Tellervo webservice. In theory you could make changes direct to this file, but we do not recommend this unless
you know exactly what you’re doing.

11.6.2 Advanced server configuration

In addition to the standard configuration options offered on the command line there are a number of other
options that can be set. These are not accessible via the command line because as a rule they should only be
altered the Tellervo developers. They are primarily for use by the developers as an alternative to hard coding
values within the server files. For instance, one such value is the TRiDaS version being used by the server.
This value will only ever need to be changed alongside other substantial changes to the code.

11.7 Managing map services

There is currently no interface in Tellervo that lets you specify the WMS mapping services that should auto-
matically be available to your Tellervo users. Each user can add servers temporarily (see section ??) but these
will disappear at the end of each session.

Chapter 12

Help and support

12.1 Getting help

At the moment your options for getting help are largely limited to contacting Peter Brewer! Once the user-base
of Tellervo expands we will set up forums and mailing lists to assist.

12.2 Support for future development

Both Tellervo Desktop and Server are free software available under the General Public License v3 (see appendix
??). This means you are free to use Tellervo in both academic and commercial environments. However, when
we talk about ‘free software’ (as the license explains) we are talking about freedom of use, not free as in price.
Tellervo has inevitably cost a great deal to develop over the years and while you are not asking for a direct
contribution, we do need your support for future development.

If there is particular functionality that you would like to see implemented in Tellervo, under the open-source
model this can be done in a number of ways:

Implement the feature yourself! – If you are able to program in Java then we would be delighted to assist
you to implement new features. You could do this in isolation∗ but we hope you will do this collaboratively
with us and make the new feature available to the rest of our community. Please contact the developers
and we will organize a developers SVN account for you to access and contribute to the source code.

Request a feature from the developers – Contact the developers at Cornell and discuss the feature that
you would like implemented. If the feature is relatively easy to implement and/or deemed useful for the
Cornell laboratory then we may be able to implement the feature for you.

Pay a third party developer – If you know a third party developer that can make the changes for you then
this is also possible. Again, we would ask that you do this in consultation with the existing developers
so that any improvements can be contributed back to the community.

Collaborative development – If you have an idea for exciting new functionality we would be pleased to
discuss the possibility of collaborative development–for example as part of a grant funded project. The
chances of success when applying for infra-structure projects from federal agencies are much greater
when proposed as part of a collaborative multi-laboratory project.

∗Note that although the GPL license allows you do develop Tellervo separately, it does include clauses that require you to make
the source code of the software you create also freely available under GPL or a compatible license. If you ‘fork’ the code in this
way you will find it increasingly difficult to benefit from improvements made to the official Tellervo code.

Part II

Developers guide

Chapter 13

Developing Tellervo Desktop

Tellervo is open source software and we actively encourage collaboration and assistance from others in the
community. There is always lots to do, even for people with little or no programming experience. Please get
in touch with the development team as we’d love to hear from you.

13.1 Source code

This section describes how to access the Tellervo source code, but as you are no doubt aware it is normal (if
not essential) to use a integrated development environment for developing any more than the most simplistic
applications. If you plan to do any development work, it is probably best to skip this section and move straight
on to the ‘Development environment’ section which includes instructions for accessing the source code directly
from your IDE. If, however, you just want to browse the source code please continue reading.

The Tellervo source code is maintained in a Subversion repository at Cornell. The simplest way to see the source
code is via the web viewer on the Cornell website: http://dendro.cornell.edu/svn/corina/. You can also
examine the Javadoc documentation of the code here http://dendro.cornell.edu/corina/developers.

php

If you have Subversion installed you can do an anonymous checkout of the code as follows:

svn co http://dendro.cornell.edu/svn/corina/

An overview of the development can be seen through the Tellervo Ohloh pages at http://www.ohloh.net/
p/corina/. Ohloh provides graphics summarizing the code over time, including timelines of commits by user.

13.2 Development environment

The IDE of choice of the main Tellervo developers is Eclipse (http://www.eclipse.org). There are many
other IDEs around and there is no reason you can’t use them instead. Either way, the following instructions
will hopefully be of use.

We have successfully developed Tellervo on Mac, Windows and Linux computers over the years. The methods
for setting up are almost identical.

The first step is to install Eclipse, Sun Java6 JDK, Subversion, Maven and NSIS∗. These are all readily available
from their respective websites. On Ubuntu they can be install from the command line easily as follows:

sudo apt-get install eclipse subversion sun-java6-jdk maven2 nsis

∗Currently there do not appear to be any readily available binaries for NSIS for MacOSX although you can build this from source.
If you do not have NSIS installed you will get an error when packaging Tellervo, however, all other aspects of the development
environment (including building OSX binaries) should work fine.

http://dendro.cornell.edu/svn/corina/
http://dendro.cornell.edu/corina/developers.php
http://dendro.cornell.edu/corina/developers.php
http://www.ohloh.net/p/corina/
http://www.ohloh.net/p/corina/
http://www.eclipse.org

62 Tellervo: A guide for users and developers

Once installed, you can then launch Eclipse. To access the Tellervo source code you will need to install the
Subversive plugin to Eclipse. As of Eclipse v3.5 this can be done by going to Help : Install new software.
Select the main Update site in the ‘Work with’ box, then locate the ‘Subversive SVN Team Provider’ plugin
under ‘Collaboration’. If you are using an earlier version of Eclipse you may need to add a specific Subversive
update site. See the Subversive website (http://www.eclipse.org/subversive/) for more details. Once
installed you will need to restart Eclipse.

Next you will need to install the m2e Maven plugin to Eclipse. This can also be installed by going to Help
: Install new software, however, you will also need to add the Maven update site as this plugin is not
currently available in the main Eclipse repository. You can do this by click the ‘Add’ button and using
the URL http://m2eclipse.sonatype.org/sites/m2e. Once again you will need to restart Eclipse before
continuing.

Next you need to get the Tellervo source code. Go to File New : Project, then in the dialog select SVN :
Project from SVN. There are two methods of accessing the Tellervo repository: anonymously (in which case
you will have read only access); or with a username provided by the Tellervo development team. Anonymous
users will need to add a repository in the form: http://dendro.cornell.edu/svn/corina/ and full users
will need to use svn+ssh://dendro.cornell.edu/home/svn/corina/.

Once the project has downloaded to your workspace, you may need to set the compliance level. This can be
done by going to Project : Properties : Java compiler and choosing compliance level of 6.0. Tellervo uses a
handful of Java 6 specific functions, particularly with regards JAXB, so will not run successfully with Java 5.

To launch Tellervo, you will need to Run : Run Java application. Create a new run configuration with the
main class set to ‘edu.cornell.dendro.corina.gui.Startup’.

13.3 Dependencies

As of June 2011, Maven is used to build Tellervo rather than the original Ant. One of the main benefits of
Maven is that it handles dependencies much more dynamically than Ant. This has become more of an issue
as the Tellervo project as grown, as it is now dependent on over 80 different open source libraries.

In an ideal world, any libraries that your code is dependent on should be available in central Maven repositories
and downloaded and installed seamlessly as part of the build process. Maven should also handle transient
dependencies (i.e. dependencies of dependencies) automatically. Therefore if a developer knows he needs the
functions within a particular library, he simply needs to supply the details of this library without having to
worry about the other libraries that this new library is in turn dependent on. Maven also manages versions
much more efficiently. If a library is dependent on a particular version of another library this is specified within
the Maven build mechanism. This means it is much easier to keep dependencies up-to-date without having
to worry about the cascading issues that upgrades often have. In short, Maven is intended to save developers
from ‘JAR hell’.

In practice, life is not necessarily that simple. Although Maven assists developers in many ways, it also
has its own particular quirks and annoyances. The main problem is how to handle the situation when the
dependencies you need are not available in central repositories. To solve this you either need to install these
jars into your local Maven repository, or make them available in a 3rd party Maven repository. For the ease
of developement we have set up a Maven repository as part of the TRiDaS project which can be browsed at
http://maven.tridas.org/. This repository is already configured within the Tellervo project so assuming
this repository is still alive, then your Tellervo project should automatically build. If not, then you will need to
install the few non-standard jars. These jars will continue to be maintained in the Tellervo SVN repository and
can be installed as follows:

I On your command line navigate to the Libraries folder of your Tellervo source code
I On Linux and Mac you can then simply run the MavenInstallCommands script
I On Windows you will need to manually run the commands located in this file

For the record, Tellervo currently depends upon the libraries listed in table ??. The table also specifies the
licenses that these libraries are made available under.

http://www.eclipse.org/subversive/
http://m2eclipse.sonatype.org/sites/m2e
http://dendro.cornell.edu/svn/corina/
svn+ssh://dendro.cornell.edu/home/svn/corina/
http://maven.tridas.org/

Developing Tellervo Desktop 63

Library License

Apache commons lang Apache 2.0
TridasJLib Apache 2.0
Batik Apache 2.0
RXTXcomm LGPL
JDOM Apache 2.0
Swing layout LGPL
Log4J Apache 2.0
JNA LGPL
Apache mime 4J Apache 2.0
Commons codec Apache 2.0
Http Client LGPL
Http core Apache 2.0
Http mime Apache 2.0
Jsyntaxpane Apache 2.0
L2fprod-common-shared Apache 2.0
L2fprod-common-sheet Apache 2.0
L2fprod-common-buttonbar Apache 2.0
iText GAPL
PDFRenderer LGPL
DendroFileIO Apache 2.0
Java Simple MVC MIT
JGoogleAnalyticsTracker MIT
gluegen BSD
JOGL BSD+ nuclear clause
WorldWindJava NOSA
SLF4J MIT
JFontChooser LGPL
MigLayout BSD
PLJava BSD
PostgreSQL PostgreSQL License (BSD/MIT)
Forms BSD
JXL LGPL
Netbeans Swing Outline GPLv2

Table 13.1: Tellervo’s primary and major first order dependencies along
with the licenses under which they are used. Note there are a total of
82 libraries upon which Tellervo draws.

Library License

Apache commons lang Apache 2.0
Launch4J BSD/MIT
NSIS zlib/libpng
Ant Apache 2.0
Eclipse Eclipse Public License - v1.0
ResourceBundle Editor LGPL
M2Eclipse Eclipse Public License - v1.0
Subversive Eclipse Public License - v1.0

Table 13.2: Additional tools/libraries typically used in the development
of Tellervo.

64 Tellervo: A guide for users and developers

13.4 Code layout

Tellervo has been actively developed since 2000, so has seen contributions by many different developers. Coding
practices have also changed in this time so inevitably there are some inconsistencies with how the source code
is organized. For instance, the most recent interfaces have been implemented using the Model-View-Controller
(MVC) architecture whereas earlier interfaces contain both domain and user logic in single monolithic classes.

Perhaps the most important inconsistency to understand is due to the transistion to the TRiDaS data model.
In earlier versions of Tellervo used the concept of a ‘Sample’† to represent each data file. Although large
portions of Tellervo have been refactored to use the TRiDaS data model classes, there are still some places
where the Tellervo Sample remain.

13.5 Multimedia resources

Tellervo includes infrastructure for multimedia resources such as icons, images and sounds within the Maven
resource folder ‘src/main/resources’. The most extensive is the Icons folder which contains many icons at
various sizes ranging from 16 × 16 to 512 × 512 as PNG format files. The icons are accessed via the static
Builder class. This has various accessor functions which take the filename and the size required, and return
the icon itself or a URI of the icon from within the Jar.

13.5.1 Ring remarks

There are two types of ring remarks in Tellervo: TRiDaS controlled remarks and Tellervo controlled remarks.
The end user does not know the difference between the two, the only difference between them is how they are
handled behind the scenes. TRiDaS remarks are those designated in the TRiDaS schema, whereas Tellervo
remarks are those defined specifically for Tellervo. They are represented differently in TRiDaS files like this:

<tridas:remark normalTridas="double pinned"/>

<tridas:remark normal="Tellervo" normalStd="insect damage" normalId="165" />

To add a new remark type to Tellervo you will need to first enter it in the database table tlkpreadingnote
specifying the vocabulary as ‘2’ (Tellervo). To display a custom icon for this remark in the software, you will
need to add a 16×16 and a 48×48 version to the resources an then add an entry to the TellervoRemarkIconMap
in edu/cornell/dendro/corina/remarks/Remarks.java. The 16× 16 icon is used in the editor interface, and the
48× 48 in PDFs.

13.6 Translations

There is internationalization infrastructure in place to enable Tellervo to be offered in multiple languages.
This is done through the use of Resource Bundles, one for each language. Within the code, whenever a
string is required, it is provided using the I18n.getText() function which then retrieves the correct string
for the current locale. If no string is found, then the default language (English) string is returned. There
is an Eclipse plugin to assist with this task called ResourceBundle Editor and it can be downloaded from
http://eclipse-rbe.sourceforge.net. Once installed it provides a GUI that allows you to simultaneously
update all languages at once.

The I18n.getText() function can be passed variables for insertion into the translation next e.g. file name,
data value, line number etc. These can be passed either as a string array, or as one or more strings. The values
are inserted into the translation string at the points marked 0, 1 etc. For instance, the translation string “File
0 exists. Rename to 1?” would accept two strings the first being the original filename and the second being

†To avoid confusing the original Tellervo class named ‘Sample’ will be referred to as ‘Tellervo Sample’ throughout this docu-
mentation. Within the code all TRiDaS data model classes are prefixed with ‘Tridas’ to help avoid confusion. The ‘Sample’ class
is therefore not at all associated with the ‘TridasSample’ class.

http://eclipse-rbe.sourceforge.net

Developing Tellervo Desktop 65

the filename to rename to. For obvious reasons, only non-translateable strings should be passed in this way as
they will be inserted indentically in all languages.

The Resource Bundle also includes support for menu mnemonics (to enable navigation of the menus with the
keyboard) and accelerator keys (to enable keyboard shortcuts to bypass menus). Mnemonic are set by adding
an ampersand before the letter of interest (e.g. &File for File) in the resource bundle. Accelerators are set
by adding the keyword ‘accel’ with the key of interest inside square brackets after the resource bundle entry.
Some examples include:

I &Graph active series [accel G]
I Graph &component series [accel shift G]

What key the ‘accel’ keyword refers to depends on the operating system Tellervo is being run on. In Windows
and Linux it is normally ‘ALT’ wheras on a Mac it is usually the Apple [U+2318] command key.

There are currently minimal translations for UK English, German, French, Dutch, Polish and Turkish. These
are by no means complete, and there are number of interfaces that are not internationalized at all. Further
assistance is required from native speakers to complete this task.

13.7 Logging

Logging in Tellervo is handled by the SLF4J and Log4J packages. Rather than write debug notes directly to
System.out, Log4J handles logging in a more intelligent way. First of all, each log message is assigned a log level
which are (in order of severity) fatal, error, warn, info, debug and trace. Through a log4j.xml configuration file
contained within the resources folder, we can control the level at which messages are displayed. For instance
while we develop we would likely show all messages up to and including ‘trace’, but when we deploy we might
only want to show messages up to and including ‘warn’.

Log4J also enables us to log to several places (known as appenders), e.g. console, log file or a component
within our application. It is also possible to change the level of logging depending on the log type, so minimal
messages can be sent to the console but verbose messages to the log file. Tellervo has the following four
appenders configured:

I Standard log file (corina.log) that rolls over up to 2mb of messages

I Submission log file (corina-submission.log) that contains the last 100kb of verbose messages and is used
by the bug submission tool to enable users to notify developers of problems.

I Console – standard messages to the console when launched from command line

I Swing GUI – a swing component for displaying basic logs to the users in the application.

To alter the way these appenders are configured you need to edit the log4j.xml file. See the Log4J documen-
tation for further information.

Using the logging framework is very simple. Just define a Logger as a static variable in your class like this:

private final static Logger log = LoggerFactory.getLogger(MyClassName.class);

where MyClassName is the name of the current class. Then you can log messages simply by calling log.warn(‘My
message’), log.debug(’My message’) etc.

Before managed logging was introduced to Tellervo, debugging was often handled through the use of Sys-
tem.out and System.err messages. To ensure that these messages are not lost we use another package called
SysOutOverSLF4J. This redirects messages sent to System.out and System.err to the logging system. This is
a temporary solution so when working on older classes, please take the time to transition these older calls to
the proper logging calls. We can then remove the need for SysOutOverSLF4J.

66 Tellervo: A guide for users and developers

13.8 Preferences

It is helpful to remember certain user preferences e.g. colors, fonts, usernames, URLs, last folder opened etc
so that they don’t have to do tasks repeatedly. This is achieved through the use of a preferences file. This file
is stored in a users home folder and consulted to see if a preference has been saved, otherwise Tellervo falls
back to a default value.

The preferences are accessed from the static member App.prefs. To set a preference you can do the following:

App.prefs.setPref(PrefKey.PREFKEY, "the value to set");

where PrefKey.PREFKEY is an enum containing a unique string to identify the preference, and the second
value is the string value to set. There are other specific methods for different data types e.g. setBooleanPref(),
setIntPref(), setColorPref() etc.

To retrieve a preference, you use a similar syntax:

App.prefs.getPref(PrefKey.PREFKEY, "default value");

When you get a preference the second parameter contains the default value to return if no preference is found.
Like the setPref() method, there are also a host of getPref() methods for different data types.

13.9 Build script

Tellervo is built using Maven and is controlled through the pom.xml file stored in the base of the Tellervo
source code. Previous versions of Tellervo used Ant but managing the increasing number of dependencies as
Tellervo has grown become too onerous (see section ?? for more details).

Earlier versions of Tellervo were deployed using Java WebStart technology primarily because this is platform
independent and requires just a single click for a user to install. However, this has since been replaced with
native installers for the major platforms due to various complications associated with native libraries (see section
??) required for 3D graphics and serial port hardware. We have also found most users are more comfortable
with the standard install procedures that they are used to on their operating systems.

While you develop Maven should automatically build Tellervo for you in the background. Specific build com-
mands are only required as you approach a release. We use the standard Maven ‘life cycle’ for building,
packaging and deploying Tellervo. The method for doing this in Eclipse is by right clicking on the pom.xml file
and selecting Run as : Maven package etc. If the option you want is not displayed, you will need to create
an entry in the build menu by going to Run : Run configurations, then create a new Maven Build with the
required ‘goal’. The main goals are as follows:

clean - This deletes any previously compiled classes and packages in the target folder. It should only be
necessary to run this occassionally if Maven has got a bit confused. If this is the case you may also need
to force Eclipse to clean too by going to Project : Clean...

generate-sources - Runs JAXB to generated classes representing the entities within the Tellervo schema (see
section ?? for further details). The classes are also generated for TRiDaS entities, but these are deleted
in favour of using those provided by the TridasJLib library.

package - This compiles Tellervo and builds a single executable JAR containing all dependencies (thanks to
the maven-shade-plugin) along with native Windows, MacOSX and Linux packages. These are all placed
in structured folders within ‘target
Binaries’ ready for deploying on a website.

install - This installs the compiled jar in your local Maven repository. This is normally used when you are
building a library that is being used by another program. It is therefore not necessary for Tellervo.

deploy - This uploads the compiled jar into the maven.tridas.org repository. Note that you will need to either
run this phase from the command line or by setting up a customer run configuration in Eclipse.

I have had some issues with the m2e plugin getting a little stuck. If you find you are getting Maven build
errors you may like to try running Maven from the command line. Navigate to the base of your corina folder
and type mvn clean, mvn package, mvn install or mvn deploy depending on what you are trying to do.

Developing Tellervo Desktop 67

13.9.1 Windows installer

Maven generates the Windows executable for the Tellervo application through the ’launch4j’ plugin. Windows
users, however, expect an installer that will create menu entries and add uninstall options to the control panel.
An installer is also required to install the user manual and the native libraries required for the serial-port and
3D graphics features in Tellervo.

The best open source tool for creating Windows installer scripts is NSIS (see http://nsis.sourceforge.

net). This is an extremely flexible scripting system that does all we need. If you have NSIS installed the Maven
package goal should create both Windows 32 and 64 bit installers automatically. We use the Maven antrun
plugin to run the makensis executable twice, once on a script for build the 32bit executable and a second for
creating the 64 bit executable. These scripts are stored in Native/BuildResources/WinBuild, and are indentical
(they import the major of the script from the same file) with the exception of the location of the native libraries
folder. The Maven resource plugin moves them into the target folder and replaces the version numbering for
use in filenames etc.

13.9.2 Mac package

The Maven osxappbundle plugin is able to produce both .app and .dmg files. Unfortunately, the libraries for
producing .dmg files are proprietary to Apple. When Maven is run on Windows or Linux, it is therefore only
able to produce a zipped .app file, and not .dmg. We therefore recommend producing the Mac release on OSX,
either natively or under a virtual machine.

Note that the osxappbundle plugin does not support the inclusion of additional files such as native libraries
within the .app file. This task is therefore handled separately by the AntRun plugin that inserts the libraries
directly to the .app file.

13.9.3 Linux Deb package

A Linux Debian package is produced using the JDeb Maven plugin. If Maven does its job properly, it should
all ‘just work’ as part of the standard maven package phase. In addition to the configuration in the pom.xml,
there are three files that are used to configure the final deb file. In src/deb/control/ there is a control file which
describes the runtime dependencies, maintainer of the package, description etc. In Native/BuildResources/Lin-
Build are two files, one a simple bash script that is used to launch Tellervo on the users computer and the
other a .desktop file for configuring how it appears in the users menus. All three of these files are automatically
updated with the current version number, so hopefully you shouldn’t need to change anything.

13.9.4 Linux RPM package

13.9.5 Native libraries

Although Tellervo is written in Java, it requires a number of native libraries to make use of OpenGL 3D graphics
capabilities and to access the serial port of the computer. This libraries are different for each operating system,
and they are also different for 32 and 64 bit machines. The correct libraries must be made available to the OS
and are therefore typically installed outside of the jar file as part of the installation process.

On Windows these libraries take the form of Dynamic Link Libraries (DLL) files which are normally placed in
the same folder as the executable:

I gluegen-rt.dll
I jogl awt.dll
I jogl cg.dll
I jogl.dll
I rxtxSerial.dll

On MacOSX the libraries come as JNILIB files and on Linux as .so files e.g.:

http://nsis.sourceforge.net
http://nsis.sourceforge.net

68 Tellervo: A guide for users and developers

I libgluegen-rt.jnilib and libgluegen-rt.so
I libjogl awt.jnilib and libjogl awt.so
I libjogl cg.jnilib and libjogl cg.so
I libjogl.jnilib and libjogl.so
I librxtxSerial.jnilib and librxtxSerial.so

On Linux systems this are installed into the /usr/lib folder and on MacOSX they are included within the .app
file.

We have experimented with techniques for packaging the libraries within the jar, then extracting the correct
libraries based on architecture and dynamically loaded at runtime. This seemed to work relatively well for
JOGL/Gluegen, but not rxtx. On certain graphics cards the JOGL/Gluegen libraries also caused a SIGSEGV
fault. All native libraries are therefore now handled by the installer for the respective platforms.

13.10 Java Architecture for XML Binding - JAXB

Java Architecture for XML Binding (JAXB) is a technology that automatically maps Java classes to XML
schemas and vice versa. It includes the ability to marshall data from Java classes to XML files and unmarshall
data from XML files into Java class representations.

JAXB is used by TridasJLib to create Java class representations of the TRiDaS data model. It is also used
directly in Tellervo to create classes for the Tellervo web service. Although the Tellervo webservice is based
heavily on TRiDaS (the two were developed in parallel), the Tellervo schema extends TRiDaS by including
classes such as dictionaries and the ‘box’ concept which are required for a lab data management application.

The Tellervo JAXB classes are automatically built by Maven using the ’maven-jaxb2-plugin’ and placed within
the ‘src/main/generated’ folder. Please note that any manual changes to these classes will automatically be
overriden the next time Maven is run. If you feel that changes are necessary to these classes then it is likely
that one or more of the following needs modification:

I The Tellervo schema located in ‘src/main/resources/schemas’
I The Tellervo JAXB bindings located in ‘src/main/resources/binding’
I The specification for how JAXB is run located in the ‘pom.xml’ file

Please note that JAXB supports plugins and extensions for enhancing the classes that it produces. One thing
to note in the Maven pom.xml is a nasty workaround when running JAXB. As the Tellervo schema depends
on the GML and TRiDaS schemas, these classes are also built by JAXB. These classes however are already
provided by the DendroFileIO library. It should be possible to use a feature called ‘episodes’ to handle this but
this seems buggy and causes issues. For now, we use an antrun task to delete the duplicate classes immediately
after they are produced.

13.11 Java version

Although we would like Tellervo to run on older versions of Java (specifically Java 5), there are a number of
features of Java 6 such as JAXB that we really need. This isn’t really a problem on Linux and Windows as
Java 6 has been around for a long time now, but it is a bit problematic for MacOSX users. For internal reasons
Apple was extremely slow bringing Java 6 to MacOSX, only releasing it with 10.6 (Snow Leopard) several years
after Windows and Linux. Tellervo will therefore not run on older Mac machines. This will gradually become
less of an issue as machines age and “Snow Leopard or later” becomes less difficult for users to fulfill.

Tellervo was originally developed against the Sun JDK. Although Sun re-released much of its JDK under the
GPL license there are still portions that are only available under proprietary licenses due to various plugins
being the copyright of third parties. Although it is still distributed at no cost, it is not ‘free’ under the terms
required by the Free Software Foundation. Tellervo can still legally be used with the Sun JDK even though
it is regarded as proprietary software due to the ‘Major components’ exception of the GPL license. However,
open source purists find this undesirable and so you may prefer to use open equivalents such as OpenJDK,
IcedTea or Apache Harmony. For this reason we now develop Tellervo against OpenJDK6. Preliminary tests

Developing Tellervo Desktop 69

show Tellervo works fine under OpenJDK7 as well, however, we do not intend to take advantage of Java 7
features in the near future to ensure backwards compatibility for as long as possible. The problem of backwards
compatibility for MacOSX seems likely to remain for some time.

13.12 Developing graphical interfaces

Like the rest of the code, a number of different styles and methods have been used for the creation of interfaces
in Tellervo. Many of the earlier interfaces were hand coded, but in recent years WYSIWYG graphical designers
have been used to enable the creation of more complex designs. Most interfaces are now Swing-based although
AWT widgets are used in places.

Some interfaces were created using the graphical designed in Netbeans IDE. These can be identified by the
presence of companion .form files and warning comments in the code indicating which sections are autogen-
erated. The major drawback with the Netbeans form designer is that it cannot cope with externally made
changes. If changes are made to the files outside of Netbeans, then the Netbeans form designer can no longer
edit these files so please make sure you are certain this is how you want to proceed. The classes generated
by Netbeans are typically used by a subclass via inheritance so that any changes can be external to the form
designer generated files.

More recently the Google WindowBuilder Pro tool has been used for interface design. This has the benefit of
(usually) being able to parse existing code enabling the modification of existing dialogs. WindowsBuilder does
have its quirks though so make sure you keep up-to-date with new releases.

13.13 Supporting measuring platforms

The support for hardware measuring platforms has been designed to be as modular and extensible as possible.
Adding support for additional measuring platform types should therefore be quick and painless!

To begin, you need to extend the abstract class edu.cornell.dendro.corina.hardware.AbstractSerialMeasuringDevice.
You can of course also extend the class implementation of another platform if you only need to modify a few
settings. This is the case for both the QC10 and QC1100 devices which extend the GenericASCIIDevice class.
The implementation code is identical for all three, but the derived classes set the port settings to the default
values for the two QuadraChek boxes.

There are a number of methods that you will need to override from the base class. If you use Eclipse to generate
the class it will create placeholders for all the relevant methods. The toString() method enables you to return
the name for the device you are implementing, whereas all the is. . .() methods enable Tellervo to understand
the capabilities of the device. For instance some devices will accept requests to zero the current measurement
and/or request the current measurement value, while others will not (instead they rely on hardware buttons
on the device itself). Some devices can have the port settings (such as baud, parity, stopbits etc) altered and
the corresponding is. . .Editable() functions indicate whether this is possible. All user interfaces in Tellervo are
modified in accordance with these methods and show the user only relevant buttons.

The guts of the work in the class are performed in the following methods:

setDefaultPortParams() – this method sets all the default port communications parameters. The abstract
class already sets typical values so you only need to override this if they need to change.

doInitialize() – this method is run when the platform is initialized. If your platform needs to do any sort of
handshaking then this is where this should be done.

serialEvent() – this method handles any events that are detected from the serial port. All new data received
from the platform is decoded here. Values and errors are passed on via the fireSerialSampleEvent()
method. Remember that all values should be sent as measurements in microns. If the platform has the
ability to work in different units the UnitMultiplier value must be used to ensure the units set by the user
are handled correctly.

70 Tellervo: A guide for users and developers

zeroMeasurement() – if your platform responds to requests to zero the measurement value this is where you
should implement this.

requestMeasurement() – if your platform responds to requests to send the current measurement value then
you should implement this functionality here.

Once your new class is complete you need to inform Tellervo that it exists. To do this you need to register the
device in edu.cornell.dendro.corina.hardware.SerialDeviceSelector. You should then be able to launch Tellervo
and test your new device in the preferences dialog. The relevant parts of the dialog will be enabled/disabled
depending on how you set the corresponding is. . .Editable() methods in your class. The dialog also includes a
seperate test window with a console for debugging the raw data received from the serial port.

13.14 Writing documentation

The documentation in Tellervo is written in the well established typesetting language LATEX 2ε. LATEX is a great
tool for producing high quality documentation with a good structure and style. Unlike standard WYSIWYG
(what you see is what you get) word processing applications like Microsoft Word, LATEX uses simple plain text
code to layout a document so that it is often described as WYSIWYM (what you see is what you mean)! The
style of a LATEX document is handled separated enabling the author to concentrate on content. By removing the
possibility for authors to tinker with font sizes etc, LATEX forces you to create clear, well structured documents.
For further details see http://en.wikibooks.org/wiki/LaTeX/.

The master document is ‘Documentation/corina-manual.tex’ and imports each chapter file. To build the
documentation you will need a editor to update and compile to PDF. On Linux I would suggest Kile, on
MacOSX TeXShop and on Windows WinEdt. To add or edit bibliography entries you will also need a BibTEX
editor such as JabRef or BibDesk.

Images specific to the documentation should be stored in ‘Documentation/Images’, but you will also automat-
ically have access to the image and icon resources in the application itself. This can be useful, for instance
when illustrating what icon a user needs to click for perform a task. To reference a icon for instance you can
use the path ‘Icons/48x48/myicon.png’.

LATEX has fantastic cross-referencing and citation functionality built in. Please follow the lead of the existing
documentation!

13.15 Making a new release

Making a new release should be a relatively quick and simply process, but there are still a few things to
remember:

I Make sure this documentation is up-to-date!

I Update the logging appenders to an appropriate level so that the user is not swamped by debug messages

I If this release relies upon a certain version of the Tellervo server, make sure you set this correctly in
‘/corina-desktop/src/main/java/edu/cornell/dendro/corina/core/App.java’. This is important to ensure
that users aren’t working against an old version of the server which could have unexpected side-effects.

I Increment the build version number in the pom.xml

I Update the splash screen and background graphics.

I Check the code in Eclipse and eliminate as many warnings as possible.

I Make sure the developers metadata is correct in the pom.xml. Add any new developers that have joined
the project since the last release.

I Run Maven package.

I TEST!

http://en.wikibooks.org/wiki/LaTeX/

Developing Tellervo Desktop 71

I Deploy to maven.tridas.org by running Maven deploy.

I Copy ‘/target/Binaries’ to the http://dendro.cornell.edu/corina/download/ folder. The new
release will automatically be added to the options for download.

I If this new release should be the recommmended release for internal and/or external uses, alter the
download.php page to reflect this.

http://dendro.cornell.edu/corina/download/

Chapter 14

Developing Tellervo Server

The Tellervo server is made up of a PHP webservice run by Apache, connecting to a PostgreSQL database.

The Tellervo webservice is written entirely in PHP. Like the Desktop Client, the server is developed with
Eclipse so most of the setup steps are identical (see chapter ??). You will, however, probably want to install
the PHP development plugin so that you get syntax highlighting etc. See the Eclipse PDT website (http:
//www.eclipse.org/pdt/) for further information.

14.1 Webservice

The Tellervo database is accessed solely through the webservice interface. A webservice is an interface designed
to be accessed by programs that send requests and receive responses. Tellervo uses a style of HTTP+POX
(Plain Old XML) to send and receive requests via a HTTP POST. In simple terms the Tellervo client sends an
XML document that describes the request via POST to the Tellervo server. The server then reads the XML
request, performs the request and then compiles the information that has been requested, finally returning the
information to the client as another XML document. The syntax of the XML document containing the request
and response is determined by the Tellervo XML schema and makes heavy use of the TRiDaS XML schema
for describing dendrochronological entities.

14.1.1 Adding TRiDaS entities to the database

14.1.2 Creating new series

Due to the complications arising from the virtual measurement concept, creating new series in Tellervo is
necessarily more complicated than any other of the TRiDaS entities. The workflow required to create a new
series is illustrated in figure ??.

14.1.3 Reading and setting permissions

<request type="create"> <permission> <permissionToCreate>true</permissionToCreate>

<permissionToRead>true</permissionToRead> <permissionToUpdate>true</permissionToUpdate>

<permissionToDelete>true</permissionToDelete> <entity type="object"

id="760a19e2-229c-11e1-8756-03b2aff2fe33"/> <securityGroup id="3"/>

</permission> </request>

???????? <request type="read"> <permission> <entity type="object"

id="760a19e2-229c-11e1-8756-03b2aff2fe33"/> <securityGroup id="3"/>

</permission> </request>

http://www.eclipse.org/pdt/
http://www.eclipse.org/pdt/

74 Tellervo: A guide for users and developers

Insert row into
tblmeasurement Update tblmeasurement

Lastmodified timestamp

Insert multiple rows into
tblreading

Create vmeasurement
row using

createnewvmeasurement()

Add new notes using
addreadingnote()

createnewvmeasurement()
inserts row into

tblvmeasurement
vmeasurementmodified-

trigger()

CreateMetaCache()

getvmeasurementresult()

Qappvmeasurementreading-
result() inserts into

tblvmeasurementreading-
result()

Insert row into
tblvmeasurementmeta-

cache

Calculate extra fields
data and insert into

tblvmeasurementmeta-
cache

addreadingnote()
inserts row into

tblvmeasurementrelyear-
readingnote

VmeasurementRelYear-
NoteTrigger() does error

checking on notes

Webservice step

DB trigger

DB function

CPGDBJ function

Figure 14.1: Illustration of the steps that happen during the creation of a new measurement series. The stages are
presented top to bottom in the approximate order in which they are executed. The majority of the processing is done
as a result of the database function createnewvmeasurement() being called by the webservice.

Figure 14.2: Illustration of the steps that happen during the alteration of an existing measurement series. The stages
are presented top to bottom in the approximate order in which they are executed.

Developing Tellervo Server 75

Images/CreatingNewDSeriesWorkflow.pdf

Figure 14.3: Illustration of the steps that happen during the creation of a new derived series. The stages are presented
top to bottom in the approximate order in which they are executed. Depending on the type of derived series being
created, a different database function is called to finish the new vmeasurement.

Figure 14.4: Illustration of the steps that happen during the alteration of an existing derived series. The stages are
presented top to bottom in the approximate order in which they are executed. Note that presently it is not possible to
alter the parameters of a derived series.

76 Tellervo: A guide for users and developers

<request type="update"> <permission> <permissionToCreate>false</permissionToCreate>

<permissionToRead>false</permissionToRead> <permissionToUpdate>false</permissionToUpdate>

<permissionToDelete>false</permissionToDelete> <entity type="object"

id="136a70a6-566b-546b-a3ae-c48cb046e4cd"/> <securityUser id="1"/>

<securityUser id="3"/> </permission> </request>

<request type="delete"> <permission> <entity type="object"

id="136a70a6-566b-546b-a3ae-c48cb046e4cd"/> <securityUser id="1"/>

</permission> </request>

14.2 Server package

The Ubuntu server package is built by Maven at the same time as the desktop package (see section ??) during
the package goal.

The server packaging is done as a secondary execution of the JDeb plugin. JDeb is configured in the pom.xml
by including all the files that need to be copied along with where in the target file system they should be placed.
The database files are installed to ‘/usr/share/corina-server’ and the webservices files to ‘/var/www/corina-
webservice’.

The metadata for the deb file is included in the control file located in Native/BuildResources/LinBuild/Server-
Control. JDeb makes use of Ubuntu’s excellent package management system to handle the dependencies.
Adding or editing dependencies is simply a matter of changing the ‘depends’ attribute control file.

The ServerControl folder also contains scripts called preinst, postinst, prerm and postrm, which are launched
before and after installation, and before uninstalling. These files are called with different parameters depending
on whether this is part of a fresh install, an upgrade, or an aborted install. There are a number of rules that
the resulting deb package should follow (e.g. if a program is configured twice, then the second run should know
and understand about previously provided details), the details of which can be found in the Debian Policy
Manual∗, along with information how and when each of the pre and post scripts is run. Hopefully this side of
the server packaging will not need to be touched again, but if you are making changes and are doing anything
more than simple tweaks, please consult the Debian policy documentation.

The postinst script is used to trigger the interactive script that helps the user configure the Tellervo server
(described further in section ??). The steps are as follows:

I Check the user running the script is root as we’re doing privileged functions
I Generated scripts from templates
I Configure PostgreSQL database, creating users and/or database if requested otherwise obtaining details

if they already exist
I Configure PostgreSQL to allow access to the specified database user
I Configure Apache to access the webservice
I Verify setup by checking Apache and PostgreSQL are running, that the webservice is accessible, the

database is accessible and that various configuration files can be read
I Print test report to screen

14.2.1 Tellervo server script

At the heart of most of the configuration and control of the Tellervo server is the corina-server script. This is
a command line PHP script that is launched after installation and can be re-run by the user to make changes
to the configuration. Although such a script would normally be written in Bash or similar, we decided to go
with PHP because of the requirement to interact with the Tellervo PostgreSQL database.

The script isolates the common tasks performed into functions. It uses the getopt() function to read both long
(e.g. –blah) and short (e.g. -b) arguments from the command line. These depending on the arguments given,
the script then calls the relevant functions.

∗Debian Policy Manual – http://www.debian.org/doc/debian-policy/

http://www.debian.org/doc/debian-policy/

Developing Tellervo Server 77

To comply with standard protocols, the script uses the exit() function to return whether the requested task
was successful or not. Returning zero means the script was successful, and returning any other integer means
the script failed. This is important so that the package management system knows when things have gone
wrong, and can then attempt to roll back if possible.

The script includes a number of helper functions and classes that you may find useful when modifying the
script:

echoTruncatedString($str, $length – echos a string to the console but truncates it to $length if necessary.
If the string is shorter than $length, then it is padded with spaces. This is useful to ensure the following
text is displayed aligned, e.g. test results.

requireRoot() – check whether the user running the script has root privileges.

checkServiceIsRunning($service) – checks whether the named service is running on the system. This is
performed by checking whether the provided string is present in the response from the shell command
‘ps ax’.

setConfigVariable($var, $value) – does a search and replace for a placeholder variable in the config.php file,
replacing with $value. Placeholders should be stored in the config.php template as %%VARIABLENAME%%.

promptForPwd($isCreating=TRUE) – is an interactive script for getting a password from the user. It
checks that the password is strong and asks for it twice to check for typos.

class Colors – can be used to display coloured text on the console. Useful for highlighting errors and test
results.

14.3 Handling client version dependencies

In an ideal world, the API for how clients talk to the Tellervo server would never change. Unfortunately, we
don’t live in an ideal world! New features in Tellervo will require changes to the API, as will changes to
TRiDaS. In anticipation to such changes, the Tellervo server includes a mechanism for detecting when a client
is too old to handle the API that it is using. In this case the server will refuse to handle the request. A similar
complementary mechanism is in place in the client for instances when a client is attempting to talk to an older
server that it no longer supports.

At the moment, the Tellervo desktop client is the only known software that talks to the Tellervo server, but in
the future we may have other 3rd party clients making requests. For example it would be possible to develop a
central data repository (much like the ITRDB or perhaps as an extension to the existing ITRDB) that harvests
data from multiple labs each running the Tellervo server. Alternatively, existing 3rd party desktop applications
(e.g. TSAP-Win, PAST4 etc) may be extended to enable them to obtain data directly from servers running
the Tellervo server software. Either way, it is important to include the ability to specify the oldest versions of
clients that are able to connect, and also to be able to specify different versions for different types of clients.

It is also necessary to include the ability to allow or disallow access to the server by unknown client applications.
If a new program is written by other developers and it attempts to access the server it could contain bugs (or
even malicious code†) that interferes with the server. For a production instance of the server this is obviously
undesirable, therefore the systems configuration option ‘onlyAllowKnownClients’ is set to TRUE.

The minimum versions of each supported client are stored in the database in the table tblsupportedclient. The
‘client’ field should contain a unique portion of the HTTP USER AGENT header provided by the client.

†Keep in mind though that a user with the necessary privileges would need to provide this new program with their credentials
for it to make changes to data.

78 Tellervo: A guide for users and developers

14.4 Handling server configuration

The Tellervo server is configured using two main PHP files: config.php and systemconfig.php. The configuration
is split into two primarily because the config.php values are considered to be editable by the server administrator,
whereas those in systemconfig.php should normally only be edited by Tellervo developers.

If you want to make configuration options editable by the administrator of the Tellervo server, then these should
be implemented within the config.php file. There is a config.php.template file which is used to construct the
config.php file on the users system. Simply adding hardcoded entries to this file is the simplest way when a
default value is appropriate. If you value of your field needs to be generated either by asking the administrator
a question (e.g. name of lab), or dynamically at the time of installation (e.g. IP address of the server)
then this template file should contain placeholder values which can then be replaced by the corina-server
configuration script. For instance the config.php.template file contains a placeholder for the hostname of the
server like this: $hostname = "%%IP%%";. The value is set by the corina-server script using the function
setConfigVariable($var, $value). Keep in mind though, that during an upgrade, the config.php is
maintained and not replaced. If you make additions to the config.php.template you will also need to make
provision for handling changes to the end users existing config.php.

If you want to add new configuration fields that don’t need to be edited by the system administrator, these
should be handled in the systemconfig.php file. The systemconfig.php file is automatically generated during
installation/upgrade of the server from entries in the database table tblconfig. This means that any changes to
the system configuration can be handled as part of the database upgrade simply by adding new rows or editing
existing rows in tblconfig. Each entry in this table is made available to the webservice as a global variable
once the corina-server script has been run. For instance the row containing key=wsversion and value=1.0.0 is
available as the variable $wsversion within the webservice.

14.5 Making a new release

As mentioned in section ??, the server package is created at the same time as the desktop binaries as part of
the Maven package procedure. There are, however, a number of steps you need to undertake to make sure
this goes smoothly.

I Make sure this documentation is up-to-date!

I Increment the <serverversion> tag in the pom.xml file

I Make sure that any upgrades that need to be made to the database are included in a new and unique
SQL file stored in Databases/db-upgrade-patches. Each file from this folder is run by the installer unless
it has previously been run.

I If this version of the server needs a particular version of the client then you’ll need to set this value in the
tblsupportedclient table by including a relevant SQL statement in your db-update-patches script e.g.:

UPDATE tblsupportedclient SET minversion=’2.13’ WHERE client=’Tellervo

WSI’;

I TEST! If users are running this as an upgrade, then we need to ensure this goes smoothly. Although
they are told to backup their database before running we should assume they’ve ignored the warning and
that we are altering precious data. Test both a fresh install and an upgrade from the previous version.

14.6 Administering the Maven repository

The following information is only necessary for the lead-developer and outlines the steps necessary to install and
maintain the central Maven repository for Tellervo. This Maven repository should provide all other developers
with the libraries required to develop Tellervo and which are bundled in the release packages.

The repository tool that we currently use is Apache Archiva. Installation is relatively simple:

Developing Tellervo Server 79

1. Download the zip bundle from the Apache Archiva website

2. Unzip and place on the server in a suitable location (e.g. usr/share/apache-archiva)

3. Run ‘sudo bin/archiva start’

If you have an existing backup of the Archiva database then you can place this in the data folder and you
should be good to go. If not you will need to do the following steps to configure the repository from scratch:

1. Go to ‘http://www.tridas.org:8080/archiva/’ in your web browser and set up the admin account. If
you’re setting this up on another domain remember you’ll need to change the repository URLs in both
the distributionManagement and repositories sections of your pom file

2. In the repositories tab you need to configure both releases and snapshot repositories

3. Set up users with ‘Repository Manager’ permissions for each user that would like to deploy to the
repository. They will need to configure their .m2/settings.xml file to do this

4. Set up the guest user to have ‘Repository Observer’ permissions for each repository. This means that
people can anonymously access artefacts from the repository

5. Add the following remote repositories:

Geotk – Identifier: geotk; URL: http://maven.geotoolkit.org/

Geomajas repository for JPedal – Identifier: maven.geomajas.org; URL: http://maven.geomajas.org/

maven.iscpif.fr – Identifier: maven.iscpif.fr; URL: http://maven.iscpif.fr/snapshots/

thirdparty.maven.iscpif.fr – Identifier: thirdparty.maven.iscpif.fr; URL: http://maven.iscpif.fr/thirdparty/

6. Add proxy connectors for the above repositories

7. Run the MavenDeployCommands.sh script to deploy the handful of repositories that we need that are in
no repositories

8. You will need to run a similar file to deploy dependencies for TRiDaSJLib. See the tridas source code
for details

The remote repositories contain libraries maintained by others that are not (at the time of writing) in the central
Maven repositories. We include them here to ensure they are cached in our repository and so are available to
our developers even if these external repositories go down. Our new repository will be populated with these
external artefacts when a developer first requests them. They are retrieved from the external repositories and
cached in ours.

It is possible to manually deploy artifacts to the repository using the web interface, but this is slow and tedious.
We normally deploy direct from Eclipse using the maven deploy goal.

Chapter 15

Systems architecture

The centralised nature of the Cornell Tree-Ring Lab data required a server-client architecture of some type. In
Corina this was achieved simply by having users save their data in a network folder stored on a central server.
Whilst this method was adequate, it has many data storage issues that can be largely solved by moving the
data storage infrastructure to a relational database management system.

Although it would be possible (and arguably simpler) to have refactored Corina to talk directly to one central
database server it was decided to go a step further and implement a Web Services orientated server-client
architecture for Tellervo.

A web services approach decouples the desktop client from the server so that the server can work on its

15.1 Authentication design

The authentication mechanism is loosely based around http digest authentication and uses a challenge and
response scheme. This makes use of cryptographic hashes (a relatively short digital fingerprint of some data
but which cannot be decompiled to retrieve the original data) and nonces (a pseudo-random string used just
once). All hashes used in the Tellervo webservice use the MD5 algorithm. Whilst an MD5 hash of a short
phrase can be compromised, the length and randomness of the original data means that using current cracking
techniques would require a very substantial amount of processing power e.g. supercomputer or large botnet.
Flaws in the MD5 hash are also mitigated by the time-sensitive nature of the Tellervo nonce, meaning that
any attack would need to be successful within a 2 minute window. New weaknesses in security are, however,
revealed on a fairly regular basis so the authentication architecture will be periodically reviewed to ensure that
it still meets our needs.

The first time a client attempts to retrieve data from the webservice (or when the client’s credentials are
incorrect or have expired) the following events occur:

I Server returns an message requesting authentication. This message includes a nonce (a hash of the
current date and time to the nearest minute) which we will call ‘server nonce’.

I The client creates a second nonce (client nonce) which is a random hash of it’s choosing, and a response
which is a hash of “username:hashofpassword:servernonce:clientnonc”. It sends this response, along with
the username and client nonce back to the server but does not send the original server nonce.

I The server computes the same “username:hashofpassword:servernonce:clientnonce” hash using the in-
formation it has stored in the database. As the server nonce is constant for a minute the two response
should match. If not the server recomputes the server nonce for one minute ago and tries again. This
ensures that the server nonce sent to the client is valid for between 1 and 2 minutes.

I Once the server authenticates the user a session cookie is sent to the client. On subsequent requests the
server recognises the session id and doesn’t request authentication again.

As the user’s password is hashed at all points, even if the communication is hijacked the attacker will not be
able to derive the users password. The user’s password is also stored in hash form within the database. This
also means that system administrators do not have access to the passwords either.

82 Tellervo: A guide for users and developers

The use of the server nonce within the response means that it will only be valid for a maximum of two minutes.
This minimizes the possibility of a replay attack.

15.2 Database permissions design

The database has a user and group based security scheme at three TRiDaS levels: object, element and series.
A user can be a member of one or more groups, and groups can be members of zero or more other groups. The
current implementation allows for one nested level of groups within groups however this could be extended if
required. Security is set on a group-by-group basis rather than on a single user to ensure ease of management.

There are five types of permissions granted: create, read, update, delete and no permission. Each permission
is independent of each other with the exception of ’no permission’ which overrides all other permissions.

A group can be assigned one or more of the permissions types to any of the sites, trees or measurements in
the database. Intermediate objects such as subsites, specimens and radii inherit permissions from their parent
object. For instance if a group has permission to read a site then it will have permission to read all subsites
from that site.

It is envisaged that most of the time, permissions will be set on a site-by-site basis. It will not be necessary to
explicitly assign permissions to trees and measurements as all permissions will be inherited. So assuming that
no permissions are set on a tree for a particular group, the permissions for the tree will be derived from the
site from which the tree was found. If, however, permissions are assigned to the tree, then these will override
those of the site. In this way it will be possible to allow a group to read the data from one particular tree from
a site in which there otherwise do not have permission to access.

Privileges are cumulative. This means that if a user is a member of multiple groups then they will gain all the
privileges assigned to those groups. If one of the groups that the user is a member of has ‘no privileges’ set on
an object it will however override all other privileges. Therefore if a user is a member of groups A and B, and
group A has read privilege and group B has ‘no privilege’ then the user will not be able to access the record.

A special ‘admin group’ has been created into which only the most trusted users are placed. Members of the
admin group automatically gain full privileges on all data within the database. They also have permission to
perform a number of administrative tasks that standard users are insulated from.

15.3 Universally Unique Identifiers

All entities in the Tellervo database have a primary key based on the Universally Unique Identifier (UUID) con-
cept. This is a randomly created 128-bit number which due to the astronomically large number of possibilities
(3× 1038) means that it is guaranteed to be unique across all installations of Tellervo. This code is typically
represented by 32 hexadecimal digits and 4 hyphens like this: 550e8400-e29b-41d4-a716-446655440000.

15.4 Barcode specifications

Barcodes in Tellervo are based on the UUID primary keys of database entities. Because they are used for
different entities in Tellervo (boxes, samples and series) it was also necessary to incorporate a method for
determining what type of entity a barcode represents. This is done by appending a single character and a colon
to the beginning of the UUID: ‘B:’ for box; ‘S:’ for sample; ‘Z:’ for series.

The barcodes in Tellervo use the Code 128 scheme. This symbology was chosen as it allows the encoding
of alphanumeric characters in a high-density label and can be read by all popular barcode scanners. While it
would have been possible to create a barcode of plain UUIDs, the 36 (or even 32) characters would result in a
barcode wider than many scanners could read. Most scanners on the market have a maximum scan width of
at least 80mm, so this was used as the baseline to work to.

Systems architecture 83

To make the barcodes less than 80mm, the UUID (with prepended entity type character code) are Base64
encoded. For example the series with UUID 3a8f4336-d17d-11df-abde-c75e325aebae would be encoded from
Z:3a8f4336-d17d-11df-abde-c75e325aebae to become: Wjo6j0M20X0R36vex14yWuuu

Chapter 16

Tellervo Database

The database behind Tellervo is run on the popular open source relational database management system,
PostgreSQL (Postgres).

16.1 Database structure

16.2 Spatial extension

Tellervo uses the PostGIS extension to Postgres to store and query spatial data within the database. Rather
than storing coordinate axis in separate fields, a single specialist ‘geometry’ field type is used.

16.3 CPGDB functions

The Tellervo Postgresql Database (CPGDB) functions are a set of functions for searching, processing, and
manipulating the data in the postgresql database. All functions are in thecpgdbschema, to allow for easy
development alongside the database without modifying the database or its structure.

Thus, to execute a cpgdb function, you must preface the function name with cpgdb, e.g.:

SELECT * FROM cpgdb.GetVMeasurementResult(’xxxx’);

GetVMeasurementResultID – This function populates the tblVMeasurementResult and tblVMeasuremen-
tReadingResult tables, returning a single varchar which contains the tblVMeasurementResult ID. You
probably want to use GetVMeasurementResult instead.

GetVMeasurementResult – This function returns a table row from tblVMeasurementResult which has been
populated with information from the provided VMeasurement ID.

GetVMeasurementReadingResult – This function is provided as a convenience method. It requires a VMea-
surementResultID obtained from one of the above two functions. Data is returned sorted by year, as-
cending.

FindVMChildren – This function reverse traverses the database and gives a list of derived VMeasurements.
This is most useful when given the ID of a direct VMeasurement, to find any sums, redates, or others
based upon it.

FindVMParents – This function traverses the database and gives a list of parents VMeasurements. This is
most useful when given the ID of a Sum, Redate, or Index, to find which VMeasurements it was based
on.

FindChildrenOf – This function returns a list of all VMeasurements derived from something. Given ‘tree’ and
‘16’, for instance, it will find all VMeasurements derived from Tree ID 16. e.g.:

86 Tellervo: A guide for users and developers

select * from cpgdb.findchildrenof(‘specimen’, 1);

Does not traverse through object relationships. Will only return children of a single particular
object. See FindChildrenOfObjectAncestor()

FindChildrenOfObjectAncestor – This function returns a list of all VMeasurements derived from a particular
object and its descendants. The output is the same format as FindChildrenOf.

FindObjectTopLevelAncestor – Returns the toplevel ancestor object of a given object. Will return the given
object if it has no toplevel ancestor.

FindObjectAncestors – Returns the ancestor objects of a given object, guaranteed from bottom to top. Can
return an empty set.

FindObjectDescendants – Returns the descendant objects of a given object using a depth-first traversal.
Can return an empty set.

FindObjectDescendantsByCode – Convenience wrapper around FindObjectDescendants which takes an ob-
ject code rather than ID.

FindObjectsAndDescendantsWhere – Returns the objects and that match a given WHERE clause and their
descendants. Does not return duplicates.

FindElementObjectAncestors – Returns the ancestry tree of objects, given an element id. Really just a
helper function for FindObjectAncestors().

GetGroupMembership – This function returns a unique list of all the groups the specified user is a member
of.

GetGroupMembershipArray – This function returns an integer array of all the securityGroupIDs the specified
user is a member of.

GetUserPermissions – Returns an array of the permissions the specified user has for a particular object ID.
The function backtracks tree : site : default and site : default if no explicit permissions are found. If
‘No permission’ is returned it is the only member of the array. If a user is a member of group 1 (admin),
they automatically get all permissions.

MergeObjects – This function merges two objects together. The first object is taken as the basis with all its
fields maintained unchanged. Any fields that are different in the second object are noted in the comments
field for checking later. If a field is null in the first object but present in the second, then this value
is used. The function cascades through the entity hierarchy merge subordinate entities where required
using the other merge functions.

MergeElements – As for MergeObjects but for elements.

MergeSamples – As for MergeObjects but for samples.

MergeRadii – As for MergeObjects but for radii.

16.4 Complex database functions

Beyond the standard database functions discussed in section ??, the Tellervo database uses PLJava
perform more complex tasks. PLJava means that we can leaverage the full power of Java to perform
calculations and analyses on the database.

Part III

Appendices

Appendix A

Belfast Apple

Format name Belfast Apple
Other name(s) None known
Type Text file
Extension(s) Various (typically txt and dat)
Read/write support Read and write
Reference implementation No original software is known to exist so TRiCYCLE is pro-

posed as the reference implementation
Data / metadata Data only with comment
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support No
Original designer John Pilcher

A.1 Description

Belfast Apple is a simple text file format (see also Belfast Archive) originating from the Queens University
Belfast lab and originally designed for use on an Apple II computer. This format is not known to be actively
used but a large amount of data (especially at Belfast) is archived in this format.

I Line 1 - name of the site or object the data refers to.
I Line 2 - identifier for the sample the data refers to.
I Line 3 - number of data values in the file
I Lines 4+ - line feed delimited data values as integers in 1/100th mm
I Final line contains a comment typically starting with ‘COMMENT -’

90 Tellervo: A guide for users and developers

A.2 Example file

1 EXAMPLE SITE
2 A1805
3 106
4 188
5 165
6 184
7 112
8 103
9 111

10 239
11 226
12 132
13 143
14 146
15 140
16 100
17 176
18 139
19 124
20 115
21 78
22 80
23 156
24 75
25 110
26 80
27 130
28 83
29 157
30 99
31 115
32 102
33 110
34 108
35 87
36 135
37 107
38 96
39 70
40 128
41 119
42 86
43 101
44 106
45 129
46 88
47 101
48 151
49 106
50 97
51 110
52 97
53 91
54 93
55 100
56 124
57 99
58 134
59 125
60 105
61 96
62 107
63 142
64 100
65 COMMENT − PB 15−NOV−99

Appendix B

Belfast Archive

Format name Belfast Archive
Other name(s) None known
Type Text file
Extension(s) Various (typically arx, txt and dat)
Read/write support Read only
Reference implementation No original software is known to exist so TRiCYCLE is pro-

posed as the reference implementation
Data / metadata Data with limited metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Martin Munro

B.1 Description

Belfast Archive is a simple text file format based on the original Belfast Apple format at the Queens University
Belfast lab. It shares the same features as Belfast Apple but with the addition of a number of metadata fields
at the end of the file.

I Line 1 - name of the site or object the data refers to.
I Line 2 - identifier for the sample the data refers to.
I Line 3 - number of data values in the file
I Lines 4+ - line feed delimited data values as integers in 1/100th mm
I The lines "[[ARCHIVE]]" and "[[END OF TEXT]]" denote the start and finish of the metadata

section

The metadata section contains the following lines:

I Line 1 - start year as an integer.
I Line 2 - unknown
I Line 3 - Double representing the resolution of data values e.g. .1= 1/10ths mm, .01 = 1/100th mm,

.001 = microns etc
I Line 4 - unknown
I Line 5 - unknown
I Line 6 - unknown
I Line 7 - title of the data series
I Line 8 - unknown
I Line 9 - unknown

92 Tellervo: A guide for users and developers

B.2 Example file

1 EXAMPLE SITE
2 1
3 176
4 342
5 338
6 334
7 409
8 362
9 308

10 360
11 264
12 325
13 318
14 51
15 48
16 47
17 60
18 49
19 48
20 ” [[ARCHIVE]] ”
21 1277
22 9177
23 . 0 1
24 1.035795
25 0.212144
26 BOB 25/03/95
27 EXAMPLE SITE #01
28 P i t h F Sap 32
29 ””
30 ” [[END OF TEXT]] ”

Appendix C

Besançon

Format name Besançon
Other name(s) SYLPHE
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Georges Lambert

C.1 Description

The Besançon format is most commonly used in a number of French laboratories. The format allows for
multiple series in the same file. Each series (or element block in Lambert’s notation) is made up of a header
line, optional metadata and a data block each of which are delimited by a line feed.

The header line begins with a dot character, then one or more spaces, then an element name (without spaces)
followed by a space and any number of ignored characters.

The metadata fields are space or line feed delimited. Each field is recorded using a key of three letters. The
format allows for the full spelling out of the field if preferred, but it is the first three letters that are read by
software so LON is the same as LONGEUR. Some fields are ‘unimodal’ in that their presence is all that is
required e.g. CAM means that cambium was observed. Other fields are ‘bimodal’ which means they require a
value to be associated with them. In this case the field key is followed by a space and then an integer or string
value e.g. POS 1950. The accepted metadata fields are as follows:

LON Number of data values

POS The temporary first ring date given relatively to a group

ORI The year for the first ring

TER The year for the last ring. Should be the same as ORI + LON

MOE Pith present

CAM Cambium present

AUB Number of the first sapwood ring

94 Tellervo: A guide for users and developers

All other information in the metadata block should be ignored. This feature is often used to allow the inclusion
of multi-line comments.

The data block begins with the marker line VAL (like metadata keys, subsequent characters are ignored so
sometimes the rest of this line is used for comments). Subsequent lines contain integer values delimited by a
space or line feed. Missing rings are marked with a comma character and the end of the data is marked with
a semicolon.

C.2 Additional information

I There is nothing in the specification to say what precision the data values should be in. Following
conversations with users it appears that Besançon files are mostly 1/100th mm but this is not always the
case. Some files include a Précision field, but this is not documented or standardised.

I There are a number of additional fields that are commonly used but which do not appear in the format
specification. These are also supported by the DendroFileIOLib
ESP Species
ECO Bark present

C.3 Example file

1 . abc22 /43
2 Lon 129
3 Esp q u e r c u s sp Nat l a m b r i s
4 P r e c i s i o n 1/100
5 M o e l l e non p r e s e n t e
6 Aub 0
7 v a l e u r s
8 149 119 156 146 170 187 197 146 191 177
9 137 108 160 108 120 177 136 174 190 109

10 189 176 170 162 114 126 133 152 146 127
11 119 131 146 133 147 82 57 77 77 82
12 96 49 97 76 88 82 72 83 81 90
13 85 87 78 104 111 132 141 105 104 120
14 111 121 115 89 94 88 90 115 111 106
15 107 120 80 92 98 84 97 82 100 86
16 99 65 85 113 90 82 57 57 99 94
17 95 105 120 110 93 96 131 133 123 122
18 113 119 95 127 88 104 , , , ,
19 , , , , , , , , ;

Appendix D

CATRAS

Format name CATRAS
Other name(s) None known
Type Binary
Extension(s) cat
Read/write support Read only
Reference implementation CATRAS
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support No
Original designer Roland Aniol

D.1 Background

The CATRAS format (?) is the only known binary dendro data format. As such it can’t be read by a simple
text editor, and can’t be imported by spreadsheet or database programs. The format was designed by Roland
Aniol for use in his program of the same name. The binary nature of the format means the files are typically
much smaller than text files containing similar data. The closed nature of the format originally meant that
users were tied to the application. The fact that users can’t manually edit the file means that the validity of
files is not a problem like it is with most other dendro formats.

CATRAS is a closed format with no documentation. The format was originally decoded in the early 1990’s
and permission was granted by Aniol for a converter to be included in Henri Grissino-Mayer’s CONVERT5
application on the condition that the format remained closed source. Subsequently others have independently
released application and code that can read ring-width data from CATRAS files to a greater or lesser extent.

D.2 Reading byte code

Reading byte code is more complicated than reading text files. Each byte is 8-bits and therefore can represent
up to 256 values. Depending on the type of information each byte contains, the bytes are interpreted in one
of four ways:

96 Tellervo: A guide for users and developers

D.2.1 Strings

Some of the bytes in CATRAS files contain character information. In this case each byte represents a letter.
In java an array of bytes can be directly decoded into a string.

D.2.2 Integers

As a byte can only represent 256 values, whenever an integer is required, CATRAS stores them as byte pairs.
Each byte pair consists of a least significant byte (LSB) and a most significant byte (MSB). The order that
they appear in files typically varies between platforms and is known as ’endianness’. As CATRAS solely runs
of Microsoft (x86) processors we can safely assume that all CATRAS files will be using little-endian (i.e. LSB
MSB). The counting in a byte pair therefore works as follows:

Value LSB MSB

0 0 0
1 1 0

.
255 255 0
256 0 1
257 1 1
258 2 1
.

A byte pair can therefore store 256x256=65536 values (more than enough for most number fields). Matters
are complicated though by the need to store negative numbers. In CATRAS pairs with an MSB¡=128 are
positive, while pairs with an MSB ranging from 255 to 128 (counting backwards) represent negative values:

Value LSB MSB

-1 255 255
-2 254 255
-3 253 255
-4 252 255

.

D.2.3 Categories

Categories are typically recorded as single bytes as most categories have just a few possible values. They can
therefore be conceptualised as being integers where 0=first option, 1=second option etc. The exception to
this is for species because there are more than 256 species. In this case, a byte pair is used in exactly the
same way as described for integers above. The only problem for species is that the codes are unique to each
laboratory and refer to values enumerated in a separate ’.wnm’ file. Without this dictionary the species code
is of little use.

D.2.4 Dates

Dates are stored as three single bytes, one for day, one for month, one for year. With only 256 values available
for ’year’, all dates are stored with 2 digit years e.g. 25/12/84. When reading CATRAS files all years ¿70 are
therefore treated as 20th century, whereas years ¡70 are treated as 21st century. This is an arbitrary decision
for use in this library as CATRAS does not care either way.

CATRAS 97

D.3 Metadata

The first 128 bytes contain the file header information and the remainder of the file contains the ring-width
data and sample depth data. Our current understanding of the header bytes is as follows but I’m not convinced
that these are all correct. Deciphering these requires painstaking work because we must try to ascertain how
each byte is being used (e.g. as a byte pair, single byte or as a string):

I 1-32 - Series name
I 33-40 - Series code
I 41-44 - File extension
I 45-46 - Series length
I 47-48 - Sapwood length
I 49-50 - Start year
I 51-52 - End year
I 53 - 1=pith 2=waldkante 3=pith to waldkante
I 54 - 1 = ew only last ring
I 55-56 - Start year
I 59-60 species also needs a catras.wnm file
I 61-63 - Creation date
I 64-66 - Amended date
I 67 - Sapwood
I 68 - 1=valid stats
I 69-75 - dated?
I 84 - 0=raw 1=treecurve 2=chronology
I 85-86 - User id
I 89-92 - Average width
I 93-95 - Standard deviation
I 96-100 - Autocorrelation
I 101-104 - Sensitivity

D.4 Data

The remaining bytes in the file contain the actual data values stored as integer byte pairs. It appears that older
version of CATRAS included one or more padding values of -1. These values should be ignored. The end of
the data values are indicated by a stop value of 999.

Following the ring-width data values there are 42 bytes of unknown meaning. These are then followed by byte
pairs representing the counts/sample depth for each ring if the series is a chronology.

D.5 Unknown bytes

There are a number of bytes in both the header and data sections that are are unaccounted for and are therefore
likely to contain data that we are ignoring. For this reason although we could attempt to create CATRAS files
from what we know we can’t be sure they would be valid:

I Header
– 57-58
– 69-82
– 105-128

I Data
– 0-42 following end of data marker

Appendix E

Comma Separated Values

Format name Comma Separated Values
Other name(s) CSV
Type Text file
Extension(s) Various (typically txt or csv)
Read/write support Read and write
Reference implementation n/a
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support No
Original designer n/a

E.1 Description

Comma separated values format is a simple text format for representing tabular data. It is not specific to
dendrochronology data and is supported by most spreadsheet and database applications. Data is delimited into
columns using a comma character to indicate cell boundaries.

Support for CSV files in TRiCYCLE is limited to a particular layout of data. The expected layout is the same
as for Excel and ODF spreadsheet files:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing values in millimetres. Cells are left empty if no data

is available for a series because it does not extend to a particular year. Data must be continuous for each
series, so missing/unmeasured rings should be included as zero.

100 Tellervo: A guide for users and developers

E.2 Example file

1 Year , MySample1 , MySample2
2 5 0 0 , 0 . 3 3 ,
3 5 0 1 , 0 . 2 6 , 0 . 2 6
4 5 0 2 , 0 . 2 , 0 . 2
5 5 0 3 , 0 . 1 4 , 0 . 1 4
6 5 0 4 , 0 . 0 8 , 0 . 0 8
7 5 0 5 , 0 . 0 2 , 0 . 0 2
8 5 0 6 , 0 . 2 , 0 . 2
9 5 0 7 , 0 . 1 4 , 0 . 1 4

10 5 0 8 , 0 . 0 8 , 0 . 0 8
11 5 0 9 , 0 . 2 ,
12 5 1 0 , 0 . 3 3 ,
13 5 1 1 , 0 . 0 8 ,
14 5 1 2 , 0 . 3 3 ,
15 5 1 3 , 0 . 2 2 ,

Appendix F

Corina Legacy

Format name Corina Legacy
Other name(s) Corina
Type Text file
Extension(s) Various including raw, rec, ind, cln, sum)
Read/write support Read and write
Reference implementation Corina
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support Yes
Multi series support No
Original designer Robert ‘Mecki’ Pohl

F.1 Description

The Corina Legacy format is the file format used by the Corina software prior to version 2, when it transferred
to using TRiDaS. The format was originally designed for use with the MS-DOS version of Corina but was also
used as the native file format in the later Java versions (up to and including v1.1).

A Corina file contains yearly data (ring-width and number of samples for that year), some fixed metadata, and
optionally weiserjahre data and a listing of element samples (for summed samples).

The title comes first, on a line by itself, followed by a blank line. The title is repeated later, so this is only to
make it easier for people or external programs to read the title.

The metadata section comes next. The syntax is ;TAG value. Tags are all uppercase. Their order is fixed.
Some values are terminated by a newline, others by the next semicolon. Valid tags, and their internal names
are:

I ID - 8 character ID used when exporting to Tucson format
I NAME - Name of the series
I DATING - Either R (relative) or A (absolute)
I UNMEAS PRE - Number of unmeasured rings towards the pith
I UNMEAS POST - Number of unmeasured rings towards the bark
I FILENAME
I COMMENTS, COMMENTS2 etc - Free text comments
I TYPE - either C (core), H (charcoal) or S (section)
I SPECIES
I SAPWOOD - Count of sapwood rings
I PITH - either P (present), * (present but undateable), or N (absent)

102 Tellervo: A guide for users and developers

I TERMINAL - either B (bark), W (waney edge), v (near edge), vv (unknown)
I CONTINUOUS - referring to the outer ring, either C (continuous), R (partially continuous) or N (not

continuous)
I QUALITY - either + (one unmeasured ring), ++ (more than one unmeasured ring)
I FORMAT - either R (raw) or I (indexed)
I INDEX TYPE - type of index used
I RECONCILED - Y or N indicating whether the series has been reconciled against another series

The data section comes next and this always starts with the line ;DATA and for reasons lost in time there are
nine spaces afterwards.

Data lines come in pairs, the first line containing the year and data values, the second containing the sample
depth/count for each value. For reasons unknown, the first and last data line pair have a slightly different
syntax to the others.

I First data line begins with a space and an integer for the first year in the line. There then follows 9
spaces followed by the integer data value for the first ring. The remaining data values (often less than a
full decades worth) on that line follow as integers left padded by spaces to take up 6 characters.

I The sample depth line that pairs with this follows next starting with 16 spaces, followed by the sample
depth value enclosed in square brackets. The remaining sample depth values follow in square brackets
left padding with spaces to take up 6 characters.

I Next comes the first normal data line. This begins with a space, followed by an integer year value. The
data values follow as integers left padded by spaces to take up 6 characters. A data line has a decades
worth of data values.

I Next comes the normal sample depth line. It begins with 7 spaces followed by each of the sample depth
values enclosed in square brackets and left padded with spaces up to 6 characters.

I Data lines continue in pairs until the last line is reached. This is the same as a normal data line except
it includes an extra data value 9990 as a stop marker. This data line may have less than a full decade of
values.

I The final sample depth line is the same as normal except it is shifted left by 4 characters. A sample
depth value is also included for the dummy 9990 stop marker year.

Following the data block there is a blank line and two option blocks of data that are only included if the file
is a chronology file.

The next block of information in a chronology file is denoted by a line ;ELEMENTS. The following lines contain
the file names of the data files that have contributed to the creation of the chronology.

Following this is an optional block denoted by the line ;weiserjahre followed by the weiserjahre data. Each
weiserjahre data line begins with a space followed by a integer year value for the first year in the line. The
weiserjahre value is left padded with spaces to fill 6 characters and the value itself is written as X/Y where X
is the number of samples that show an upward trend in width; and Y is the number of samples that show a
downward trend in width. The weiserjahre value is forward facing so the value for ring 1001 shows the trend
between ring 1001 and 1002. There is therefore one less weiserjahre value in the final row than there are
ring-widths.

The final line of Corina data files contains the author’s name preceded by a tilde.

Corina Legacy 103

F.2 Example file

1 Trebenna , B y z a n t i n e F o r t r e s s , NW tower 1AB
2

3 ; ID 907010;NAME Trebenna , B y z a n t i n e F o r t r e s s , NW tower 1AB; DATING R ; UNMEAS PRE 1 ;
UNMEAS POST 1

4 ; FILENAME G:\DATA\TRB\TRB1AB .SUM
5

6

7 ; TYPE S ; SPECIES J u n i p e r u s sp . ; FORMAT R ; PITH +
8 ; TERMINAL vv ; CONTINUOUS N; QUALITY +
9 ; RECONCILED Y

10 ;DATA
11 1001 125 219 207 139 62 107 29 91 65
12 [1] [1] [1] [1] [1] [1] [1] [1] [1]
13 1010 71 132 74 150 75 156 122 81 46 57
14 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
15 1020 147 78 89 126 73 121 67 71 64 129
16 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
17 1030 149 155 122 126 53 136 90 65 100 67
18 [1] [1] [1] [1] [1] [1] [1] [1] [1] [2]
19 1040 67 101 132 102 40 67 42 36 62 29
20 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
21 1050 30 44 46 40 34 61 55 29 44 63
22 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
23 1060 62 38 22 26 26 28 37 21 21 27
24 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
25 1070 17 18 50 21 33 12 17 16 27 20
26 [2] [2] [2] [2] [2] [2] [2] [2] [1] [1]
27 1080 18 11 9 8 9990
28 [1] [1] [1] [1] [1]
29

30 ; ELEMENTS
31 G:\DATA\TRB\TRB1A . REC
32 G:\DATA\TRB\TRB1B . REC
33 ; w e i s e r j a h r e
34 1001 1/0 0/1 0/1 0/1 1/0 0/1 1/0 0/1 1/0
35 1010 1/0 0/1 1/0 0/1 1/0 0/1 0/1 0/1 1/0

1/0
36 1020 0/1 1/0 1/0 0/1 1/0 0/1 1/0 0/1 1/0

1/0
37 1030 1/0 0/1 1/0 0/1 1/0 0/1 0/1 1/0 0/1

1/1
38 1040 2/0 2/0 0/2 0/2 2/0 0/2 0/2 2/0 0/2

2/0
39 1050 2/0 1/1 0/2 0/2 2/0 0/2 0/2 2/0 2/0

1/1
40 1060 0/2 0/2 2/0 1/1 2/0 2/0 0/2 1/1 2/0

0/2
41 1070 1/1 2/0 0/2 2/0 0/2 2/0 1/1 1/0 0/1

0/1
42 1080 0/1 0/1 0/1
43 ˜ Unknown User

Appendix G

DendroDB

Format name DendroDB
Other name(s)
Type Text file
Extension(s) dat
Read/write support Read only
Reference implementation DendroDB website
Data / metadata Data and some structured metadata
Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Simon Brewer

G.1 Description

The DendroDB format is an export file format produced by the DendroDB website/database. There is no
known software that can natively read DendroDB files so a ‘writer’ for this format has not been developed.

The format is self-explanatory, beginning with a copyright line, followed by 7 metadata lines, then the data
itself. There are eight possible data variables: Total width; Earlywood width; Latewood width; Min. Density;
Max. Density; Earlywood density; Latewood density; Average density. Ring width data is provided in microns
but the units for density measurements are not document.

As of Feb 2011, the DendroDB database does not contain data prior to 441AD so handling of BC/AD transition
has not been tested. The DendroDB web interface suggests that BC dates should be entered as negative
integers, but it also allows request for data from year 0. This suggests the database uses an Astronomical
calendar and this is how the DendroIOLib treats it.

http://dendrodb.cerege.fr/indexBAD.htm

106 Tellervo: A guide for users and developers

G.2 Example file

1 Data downloaded from DendroDB . P l e a s e acknowledge a u t h o r s
2 S i t e : Example s i t e
3 Contact : A N Other
4 S p e c i e s : L a r i x s i b i r i c a
5 Parameter : Latewood width
6 L a t i t u d e : 5 3 . 2 5
7 L o n g i t u d e : 5 7 . 3 5
8 E l e v a t i o n : 1670
9 Tree Core Year Latewood width

10 1 1 1648 16
11 1 1 1649 21
12 1 1 1650 8
13 1 1 1651 10
14 1 1 1652 6
15 1 1 1653 8
16 1 1 1654 11
17 1 1 1655 13
18 1 1 1656 9
19 1 1 1657 10
20 1 1 1658 10
21 1 1 1659 4
22 1 1 1660 5
23 1 1 1661 7
24 1 1 1662 4
25 1 1 1663 8
26 . . .

Appendix H

Heidelberg

Format name Heidelberg
Other name(s) TSAP, FH
Type Text file
Extension(s) .fh
Read/write support Read and write
Reference implementation TSAP-Win
Data / metadata Data and extensible metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support Yes
Original designer Frank Rinn

H.1 Description

The Heidelberg format (?) is the native file format for Rinntech’s TSAP-Win software. It supports metadata in
the form of keyword-value pairs. There are more than 140 standard keywords specified in the documentation,
but users can extend these with their own. This makes the format extremely flexible, but the absence of any
checking of data types (strings, numbers categories etc) and no method of validation means that there can be
problems interpreting metadata entries.

Heidelberg files can store one or more series in a single file. Each series is represented by a header and a data
block.

The header block begins with a line HEADER:. This is followed by lines of metadata, with one field on each
line, in the format keywords=value much like a standard Windows INI file. As mentioned previously there are
a number of predefined keywords, all of which are outlined here:

I AcceptDate
I Age
I AutoCorrelation
I Bark
I BHD
I Bibliography
I Bibliography[n]
I BibliographyCount
I Bundle
I CardinalPoint
I ChronologyType

I ChronoMemberCount
I ChronoMemberKeycodes
I Circumference
I Client
I ClientNo
I Collector
I Comment
I Comment[n]
I CommentCount
I Continent
I CoreNo

108 Tellervo: A guide for users and developers

I Country
I CreationDate
I DataFormat
I DataType
I DateBegin
I Dated
I DateEnd
I DateEndRel
I DateOfSampling
I DateRelBegin[n]
I DateRelEnd[n]
I DateRelReferenceKey[n]
I DateRelCount
I DeltaMissingRingsAfter
I DeltaMissingRingsBefore
I DeltaRingsFromSeedToPith
I Disk
I District
I EdgeInformation
I EffectiveAutoCorrelation
I EffectiveMean
I EffectiveMeanSensitivity
I EffectiveNORFAC
I Key
I EffectiveNORFM
I EffectiveStandardDeviation
I Eigenvalue
I Elevation
I EstimatedTimePeriod
I Exposition
I FieldNo
I FilmNo
I FirstMeasurementDate
I FirstMeasurementPersID
I FromSeedToDateBegin
I GlobalMathComment[n]
I GlobalMathCommentCount
I GraphParam
I Group
I HouseName
I HouseNo
I ImageCellRow
I ImageComment[n]
I ImageFile[n]
I ImageCount
I ImageFile
I Interpretation
I InvalidRingsAfter
I InvalidRingsBefore
I JuvenileWood
I KeyCode
I KeyNo
I LabotaryCode
I LastRevisionDate
I LastRevisionPersID
I Latitude

I LeaveLoss
I Length
I Location
I LocationCharacteristics
I Longitude
I MajorDimension
I MathComment
I MathComment[n]
I MathCommentCount
I MeanSensitivity
I MinorDimension
I MissingRingsAfter
I MissingRingsBefore
I NumberOfSamplesInChrono
I NumberOfTreesInChrono
I PersId
I Pith
I Project
I ProtectionCode
I Province
I QualityCode
I Radius
I RadiusNo
I RelGroundWaterLevel
I RingsFromSeedToPith
I SampleType
I SamplingHeight
I SamplingPoint
I SapWoodRings
I Sequence
I SeriesEnd
I SeriesStart
I SeriesType
I ShapeOfSample
I Site
I SiteCode
I SocialStand
I SoilType
I Species
I SpeciesName
I StandardDeviation
I State
I StemDiskNo
I Street
I Timber
I TimberHeight
I TimberType
I TimberWidth
I TotalAutoCorrelation
I TotalMean
I TotalMeanSensitivity
I TotalNORFAC
I TotalNORFM
I TotalStandardDeviation
I Town
I TownZipCode

Heidelberg 109

I Tree
I TreeHeight
I TreeNo
I Unit
I UnmeasuredInnerRings

I UnmeasuredOuterRings
I WaldKante
I WoodMaterialType
I WorkTraces

The meaning of many of these keywords is fairly self-explanatory but others are a little more obscure. As
there is no data typing or validation the format of the contents of these fields cannot be predicted. This is
particularly a problem when trying to compare fields such as Latitude, Longitude and FirstMeasurementDate,
but is especially a problem when comparing files produced in different labs.

The header section is followed by a data section denoted by a line containing the keyword DATA: followed
by the type of data present which can be one of Tree; HalfChrono; Chrono; Single; Double; Quad. Tree,
HalfChrono and Chrono are the original keywords supported by early versions of TSAP but these are now
deprecated in preferences of the more generic Single, Double and Quad terms. The terms Single, Double and
Quad are largely interchangeable with Tree, HalfChrono and Chrono respectively, but not completely. Double
can refer to both Tree and HalfChrono format data. When the newer terms are used, the header keyword
DataFormat is used to record whether the data is equivalent to Tree, HalfChrono or Chrono.

Single format - data is typically used for storing raw measurement series. Each data line contains 10 data
values each being a left space padded integer taking up 6 characters. Any spare data values in the final
data line are filled with zeros. Alternatively it appears that TSAP-Win also accepts this data section as
single integer values one per line.

Double format - data is for storing data with sample depth information - typically chronologies. Like the
single format section, data is stored as 10 integer values, each taking up 6 characters and left padded
with spaces. The values are in pairs of ring-widths and sample depths, therefore five rings are stored per
line.

Quad format - data is for storing chronologies with sample depth as well as data on how many of the
constituent series increase and decrease. This format therefore requires four numbers for each data
point: ring-width; sample depth; increasing series; decreasing series. Numbers are stored as integers, left
space padded as before, but this time only using 5 characters not 6. Four data points are included on
each line, therefore this means there are 16 numbers per row and each row is 80 characters long.

110 Tellervo: A guide for users and developers

H.2 Example file - raw series

1 HEADER:
2 DateEnd=−66
3 KeyNo=27
4 P r o j e c t=Growth s t u d i e s
5 Length =103
6 L o c a t i o n=Example s i t e
7 S p e c i e s=PISY
8 SapWoodRings=14
9 WaldKante=WKF

10 S t a t e=C o l o r a d o
11 P e r s I d=FR
12 KeyCode=271017
13 Country=USA
14 DateOfSampl ing =19950506
15 TreeNo=5
16 CoreNo=1
17 E x p o s i t i o n=North−West
18 C r e a t i o n D a t e =19970526
19 S o i l T y p e=Sand
20 DATA: Tree
21 125 130 99 120 115 145 151 130 135 151
22 200 190 151 170 170 174 170 200 210 130
23 180 197 210 160 180 155 180 199 140 150
24 146 140 145 150 155 110 115 113 120 130
25 110 120 150 120 120 110 115 160 160 145
26 135 145 125 115 145 149 120 150 160 99
27 110 75 70 82 96 90 120 151 155 130
28 132 133 149 110 130 120 128 118 125 115
29 95 90 110 98 80 85 97 88 70 100
30 90 70 80 90 85 78 95 84 70 90
31 80 75 70 0 0 0 0 0 0 0

H.3 Example file - chronology

1 HEADER:
2 KeyCode=ABCK0530
3 DataFormat=Hal fChrono
4 S e r i e s T y p e=Mean c u r v e
5 Length=60
6 DateBegin =987
7 DateEnd=1046
8 Dated=Dated
9 L o c a t i o n=Example s i t e

10 S p e c i e s=QUSP
11 GlobalMathCommentCount=0
12 ImageCount=0
13 CommentCount=0
14 B i b l i o g r a p h y C o u n t=0
15 DATA: Double
16 125 1 125 2 264 2 206 2 115 2
17 111 2 188 2 308 2 197 2 419 2
18 238 2 227 2 279 2 293 2 271 2
19 309 2 170 2 204 2 163 2 175 2
20 164 2 211 2 134 2 141 2 107 2
21 72 2 74 2 91 2 110 2 47 2
22 87 2 87 2 35 2 47 2 80 2
23 66 2 38 2 82 2 78 2 65 2
24 63 2 76 2 67 2 91 2 73 3
25 39 3 41 3 78 3 57 3 54 3
26 41 3 39 3 52 3 53 3 43 3
27 48 3 32 3 32 3 48 3 59 3

Appendix I

Microsoft Excel 97/2000/XP

Format name Microsoft Excel 97/2000/XP
Other name(s) Binary Interchange File Format, BIFF
Type Binary file
Extension(s) xls
Read/write support Read and write
Reference implementation Microsoft Excel
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Microsoft

I.1 Description

The Excel file format is a widely used format for storing spreadsheet data. It is a proprietary binary format
created by Microsoft but suppported by many spreadsheet and statistical applications. It is not to be confused
with the Office Open XML format which was introduced by Microsoft with MS Office 2007 and typically has
the file extension xlsx.

Although Excel files can contain multiple sheets in a workbook, only the first sheet is considered. Like the CSV
and ODF Spreadsheet formats, support for Excel files is limited to a particular layout or style of spreadsheet.
The layout of the data sheet should be as follows:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing values in millimetres. Cells are left empty if no data

is available for a series because it does not extend to a particular year. Data must be continuous for each
series, so missing/unmeasured rings should be included as zero.

112 Tellervo: A guide for users and developers

I.2 Example file

Appendix J

Microsoft Excel 2007

Format name Microsoft Excel 2007
Other name(s) Office Open XML Spreadsheet, OOXML, OpenXML
Type XML file
Extension(s) xlsx
Read/write support Read and write
Reference implementation ISO 29500
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Microsoft

J.1 Description

This is the new XML file format introduced by Microsoft with Excel 2007. Unlike the binary format used by
the previous version of Excel, this format is an open standard. However, it should not be confused with the
OpenDocument Format standard that was developed by the OASIS consortium.

The layout of the data sheet should be just as for the Excel 97/2000/XP format:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing values in millimetres. Cells are left empty if no data

is available for a series because it does not extend to a particular year. Data must be continuous for each
series, so missing/unmeasured rings should be included as zero.

See the screenshot in the Microsoft Excel 97/2000/XP format to see how an example of how the spreadsheet
should look.

Appendix K

Nottingham

Format name Nottingham
Other name(s) Nottingham Laboratory format
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation Unknown
Data / metadata Data only
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Cliff Litton

K.1 Description

The Nottingham format was designed by Cliff Litton. It is a simple text format with no support for metadata.

Line 1 contains a series name and an integer indicating how many data values there are in the file. Subsequent
lines contain the data represented as 1/100th mm integers in twenty columns seemingly in either 4 characters
or 3 characters + 1 space.

There is no known reference implementation for this format and few known examples of data so little is known
about how it should handle unusual situations such as negative values, values ¿999 etc.

116 Tellervo: A guide for users and developers

K.2 Example file

1 ABCD01 176
2 342 338 334 409 362 308 360 264 325 318 134 151 219 268 290 222 278 258 173 198
3 294 202 170 176 172 121 87 130 114 108 170 135 131 126 87 100 86 104 103 127
4 112 94 96 120 168 149 119 124 79 67 88 90 93 77 49 42 53 38 57 43
5 50 41 56 66 62 55 55 45 47 63 58 60 44 45 49 50 62 61 43 54
6 91 60 56 43 52 51 65 68 55 44 41 75 94 78 63 69 58 75 55 47
7 58 46 62 45 52 50 77 50 63 75 77 64 66 57 80 57 78 65 68 75
8 65 98 85 82 119 89 85 87 83 108 129 123 160 117 129 121 88 69 97 77
9 96 106 71 89 50 65 133 89 88 50 60 95 95 91 102 158 83 55 98 70

10 45 46 40 36 64 58 52 58 56 94 51 48 47 60 49 48

Appendix L

ODF Spreadsheet

Format name ODF Spreadsheet
Other name(s) ODF, ODS, OpenDocument Spreadsheet, OpenOffice.org

Spreadsheet,
Type XML file
Extension(s) ods
Read/write support Read and write
Reference implementation ISO/IEC 26300:2006
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer OASIS consortium

L.1 Description

The OpenDocument Format (ODF) spreadsheet format is an XML-based specification developed by the Or-
ganization for the Advancement of Structured Information Standards (OASIS) consortium. It should not be
confused with the similarly named Office Open XML format developed by Microsoft. The ODF spreadsheet
format is an open standard which can be read by most modern spreadsheet applications including MS Excel,
OpenOffice.org and Google Docs.

Support for ODF spreadsheets in TRiCYCLE is necessarily limited to a particular layout of spreadsheet:

I Row 1 - Header names for each column
I Column A - Year values
I Column B+ - One column for each series containing values in millimetres. Cells are left empty if no data

is available for a series because it does not extend to a particular year. Data must be continuous for each
series, so missing/unmeasured rings should be included as zero.

Please see the Excel section for a screenshot of how an ODF spreadsheet should look.

Appendix M

Oxford

Format name Oxford
Other name(s) Dan Miles Format, English Heritage Format
Type Text file
Extension(s) Various including dan, ddf but often none
Read/write support Read and write
Reference implementation Various English Heritage applications
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support No
Original designer Ancient Monuments Laboratory of English Heritage

M.1 Description

The Oxford format seems to be only currently used in the Oxford Dendrochronology Laboratory. It was designed
in the 1980s for use with a number of DOS based applications for the English Heritage Ancient Monuments
Laboratory. It is still actively used by the Oxford Lab with these programs and a number of newer Windows
applications.

The file is a text file format containing two header lines following by a block of data values and an optional
block of count/sample depth values. Some files also contain a number of comment lines at the end of the file.

Line 1 contains the following fields:

I Char 1 - Apostrophe
I Chars 2-8 - Series name
I Char 9-10 - spaces
I Char 11 - ¡
I Chars 12-15 - First year in sequence (when series is securely dated). Year should be left padded with

spaces if less than 4 characters.
I Char 16 - hyphen
I Chars 17-20 - Last year in sequence (when series is securely dated). Year should be left padded with

spaces if less than 4 characters.
I Char 21 - space
I Char 22+ - Description - typically name of site/building etc
I Final char - optional apostrophe

Line 2 contains:

I Integer number of years

120 Tellervo: A guide for users and developers

I Comma
I Integer start year

The start year on line 2 and the first year on line 1 will be the same for securely dated series. When the series
is tentatively or relatively dated the first year (and/or) the last year on line 1 will be left blank. For undated
series the start year is set to 1001.

The data lines follow the two header lines. These typically contain 10 data values per line, but there can be
more (if rings have been added) or less e.g. last line. The values are in 1/100th mm integers and can only
contain three digits (e.g. max 999 1/100th mm). Data values are space delimited. Some example files contain
values that are left padded with zeros if the value is on 1 or 2 characters wide (e.g. ’025’ rather than ’ 25’).

Following the data values there should be an empty line followed by an optional sample count/depth block. The
count block is formatted in largely the same way as the data values block. The values are stored in columns 2
characters (rather than 3 characters) wide. Like the data values, the count values are space delimited integers,
typically (but not always) 10 per line.

The file is terminated with 0, 1 or 2 free-text comment lines. A number of Oxford data files have been seen
that terminate with the ASCII control character referred to variably as ’SUB’, ’SUBSTITUTE’ or ’CTRL+Z’
(represented in Unicode as character dec 26 - hex 1A). It is not clear whether this is necessary for any particular
programs to function.

M.2 Limitations

I Only holds whole ring-width data
I Does not cope with data values ¿999 1/100th mm
I Does not cope with chronologies of ¿99 samples
I Does not allow dates before 1AD

Oxford 121

M.3 Example file

1 ’ABCD <1850−1925> A F i c t i o u s s i t e − abcd1 abcd2 ’
2 75 ,1850
3 422 582 355 266 225 271 361 235 387 395
4 794 611 446 248 277 359 111 226 189 711
5 464 172 190 239 128 153 234 828 207 157
6 768 180 178 168 204 163 160 255 166 136
7 182 201 142 188 223 186 150 135 134 666
8 191 122 223 555 123 126 108 133 137 134
9 161 222 93 100 132 104 86 277 101 141

10 185 151 261 110 145
11

12 1 2 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 2 2 2 2
14 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2 2 2 2
17 2 2 2 2 2 2 2 2 2 2
18 2 2 2 2 2 2 2 2 2 2
19 2 2 2 2 1

Appendix N

PAST4

Format name PAST4
Other name(s) P4P PAST4 Project File
Type Text file
Extension(s) p4p
Read/write support Read and write
Reference implementation PAST4
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support
Relative dating support
Multi series support Yes
Original designer Bernhard Knibbe

The PAST4 format (?) is the native file format for SCIEM’s PAST4 software. It is a hybrid XML file, containing
most metadata in structured XML but some metadata and all data as plain text. It is unique amongst dendro
data formats in that it contains not only data and metadata but also settings information for the PAST4
software such as details on what colours to use in graphs, which series should be displayed on screen etc. The
general structure of a P4P file is as follows:

I Project header (required)
I Settings (optional)
I Groups (required, repeatable)
I Records (required, repeatable)

The root XML tag for the file is <PAST_4_PROJECT_FILE>. Inside this is the <PROJECT> tag which contains
the following attributes:

I ActiveGroup - Zero based index specifying which group is active
I EditDate - Date the file was last edited
I Groups - Number of groups within this project
I Locked - Either TRUE or FALSE indicating whether a password is required to open the file
I Name - Name of the project
I Password - Password used to lock the project
I PersID - Abbreviation of the authors name
I Records - Number of records in the project
I Reference - Zero based index indicated which is the reference series (-1 if none selected)
I Sample - Zero based index indicating which is the selected sample (-1 if none selected)
I Version - Version number for this PAST4 format. At the time of writing only one version exists (400).

Of these fields only Name, Groups and Records are mandatory. The project tag can also contain a <![CDATA[

tag which allows the storing of a project description in plain text.

124

Next comes the <SETTINGS> tag. This is one very large XML tag with many attributes controlling the what
PAST4 should display the data. The contents of this tag are optional and are therefore irrelevant for the
transfer of dendro data.

Next comes one or more <GROUPS> tags. A group is an arbitrary collection of series, perhaps representing a
number of measurements of a single object, or perhaps an administrative collection of series. Groups can be
nested in a hierarchy, but rather than use the hierarchical nature of XML files, the format instead lists all groups
side-by-side and maintains the relationships through the use of an ’owner’ attribute containing the index of the
parent group. This arrangement means than any changes to the hierarchy, or the deletion of a group requires
all indices to be carefully updated to avoid corrupting the file. The group tag has the following attributes:

I Name - Name of the group
I Visible - Either TRUE or FALSE indicating whether the group should be shown in graphs
I Fixed - Either TRUE or FALSE indicating whether the group can be moved
I Locked - Either TRUE or FALSE. If locked the group can be used in the calculation of further mean

values.
I Changed - Internal TRUE or FALSE value for keeping track of changes
I Expanded - TRUE or FALSE value indicating whether the group should be expanding in the project

navigator window
I UseColor - TRUE or FALSE value for is content should be displayed in color
I HasMeanValue - TRUE or FALSE indicating if the group has a dynamic mean value
I IsChrono - TRUE or FALSE indicating if the group mean is calculated with sample depth information
I Checked - TRUE or FALSE indicating if the group is locked and checked
I Selected - TRUE or FALSE indicated in the group is selected in the project navigation window
I Color - 24bit integer indicating the RGB volor value for the group using Borland format
I Quality - Integer value describing the quality of the group mean
I MVKeycode - String code for the group. If empty the Name field is used
I Owner - Integer pointing containing the index of the parent group if this group is in a hierarchy. If its a

top level group it should be -1.

As with the project tag, the group tag can also contain a <![CDATA[section for storing a plain text description
of the group.

The final tag type in the file is the <RECORDS> tag. These contain the actual data series and most of the
metadata. Like group tags, records tags are placed side-by-side in the file and are placed into the group
hierarchy by the use of the ’owner’ attribute. In addition, the tag also has the following attributes:

I Keycode - Name of the series
I Length - Integer for the number of rings
I Owner - Integer index to the group to which this record belongs
I Chrono - TRUE or FALSE indicating whether this record has density information
I Locked - TRUE or FALSE indicating in the record can be moved
I Filter - TRUE or FALSE indicating if an indexing function is appled to the data
I FilterIndex - Integer index for the filter used
I FilterS1 - Parameter 1 for the filter
I FilterS2 - Parameter 2 for the filter
I FilterB1 - Additional filter parameter
I FilterWeight - Additional filter parameter
I Offset - Position of the first ring
I Color - 24bit RGB color for record in Borland format
I Checked - TRUE or FALSE indicating is the record is selected for use in the dynamic group mean
I !VShift - Temporary integer value added to data value to shift vertically in graphs
I IsMeanValue - TRUE or FALSE indicating if this is a dynamic mean value
I Pith - TRUE or FALSE
I SapWood - Integer storing the number of sapwood rings
I Location - String location information
I Waldkante - String description of presence of waney edge
I FirstValidRing - Integer indicating which ring is the first valid ring. If ¿0 then some rings are discarded
I LastValidRing - Integer indicating which ring is the last valid ring. If ¿0 then some rings are discarded

PAST4 125

I UseValidRingsOnly - TRUE or FALSE - internal use only
I Quality - Integer indicating the quality of the record

The record tag then contains a <HEADER> tag with a <![CDATA[section which includes additional free-text
header information. There are no requirements as to how information should be laid out in this field however
many users seem to adopt the Heidelberg style of keyword=value.

Next comes the <DATA> tag which is empty except another <![CDATA[section. This is where the actual
ring-width data is stored. Each data value is recorded on a separate line (using CR LR line breaks). Each line
contains the following six tab delimited fields:

I Ring width as a floating point number
I Sample depth
I Number of sample increasing
I Latewood percentage as a floating point value 0-1 (0 if not known)
I Duplicate/backup ring-width value to store the original ring-width value. If an index is applied the

ring-width value in column 1 is altered.
I Comment string about this particular ring

N.1 Dating

PAST4 contains an option for enabling/disabling the year 0 but it does not record within the data file whether
the option was set when the file was created. By default the year 0 is disabled therefore the library treats
PAST4 files as if they use the Gregorian calendar but it is possible that files were in fact created with the
Astronomical calendar in mind.

126 Tellervo: A guide for users and developers

N.2 Example file

1 <?xml v e r s i o n =”1.0”?>
2 <PAST 4 PROJECT FILE>
3 <PROJECT Name=” t i t l e 0 ” V e r s i o n =”400” Locked=”FALSE” Password=””
4 C r e a t i o n D a t e =”04/05/2006 2 : 1 3 : 5 1 PM” E d i t D a t e =”09/01/2010 13 :02” A c t i v e G r o u p =”0”
5 R e f e r e n c e =”−1” Sample=”−1” Pers ID=” i n v e s t i g a t o r 0 ” Groups =”2” Records=”3”>
6 <![CDATA[d e s c r i p t i o n 0
7]]></PROJECT>
8 <SETTINGS/>
9 <GROUP Name=” t i t l e 1 ” V i s i b l e =”TRUE” F i x e d=”FALSE” Locked=”FALSE” Changed=”FALSE”

10 Expanded=”TRUE” UseCo lo r=”TRUE” HasMeanValue=”FALSE” I s C h r o n o=”FALSE”
11 Checked=”FALSE” S e l e c t e d =”FALSE” C o l o r =”0” MVKeycode=”” Owner=”−1”>
12 <![CDATA[]]></GROUP>
13 <GROUP Name=”Unnamed Group ” V i s i b l e =”TRUE” F i x e d=”FALSE” Locked=”FALSE” Changed=”

FALSE”
14 Expanded=”TRUE” UseCo lo r=”TRUE” HasMeanValue=”FALSE” I s C h r o n o=”FALSE” Checked=”

FALSE”
15 S e l e c t e d =”FALSE” C o l o r =”0” MVKeycode=”” Owner=”−1”><![CDATA[]]></GROUP>
16 <RECORD Keycode=” t i t l e 6 ” Length =”4” Owner=”0” Chrono=”FALSE” Locked=”FALSE” F i l t e r =”

FALSE”
17 F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE” F i l t e r W e i g h t =””

O f f s e t =”0”
18 C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0” P i t h=”FALSE” SapWood=”0”
19 L o c a t i o n=”locat ionComment1 ” S p e c i e s =”Quercus ” Waldkante=”” F i r s t V a l i d R i n g =”0”
20 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
21 <HEADER><![CDATA[U n i t =1/100 th m i l l i m e t r e s
22]]></HEADER>
23 <DATA><![CDATA[1 2 3 1 1 0 123
24 123 1 1 0 123
25 123 1 1 0 123
26 125 1 1 0 125
27]]></DATA>
28 </RECORD>
29 <RECORD Keycode=” t i t l e 6 ” Length =”4” Owner=”0” Chrono=”FALSE” Locked=”FALSE” F i l t e r =”

FALSE”
30 F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE” F i l t e r W e i g h t =””

O f f s e t =”0”
31 C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0” P i t h=”FALSE” SapWood=”0”
32 L o c a t i o n=”locat ionComment1 ” S p e c i e s =”QUSP” Waldkante=”” F i r s t V a l i d R i n g =”0”
33 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
34 <HEADER><![CDATA[U n i t =1/100 th m i l l i m e t r e s
35]]></HEADER>
36 <DATA><![CDATA[1 2 3 1 1 0 123
37 123 1 1 0 123
38 123 1 1 0 123
39 125 1 1 0 125
40]]></DATA>
41 </RECORD>
42 <RECORD Keycode=”Unnamed s e r i e s ” Length =”2” Owner=”1” Chrono=”FALSE” Locked=”FALSE”
43 F i l t e r =”FALSE” F i l t e r I n d e x =”−1” F i l t e r S 1 =”100” F i l t e r S 2 =”100” F i l t e r B 1 =”FALSE”
44 F i l t e r W e i g h t =”” O f f s e t =”0” C o l o r =”0” Checked=”FALSE” V S h i f t =”0” IsMeanValue =”0”
45 P i t h=”FALSE” SapWood=”0” L o c a t i o n =”” S p e c i e s =”” Waldkante=”” F i r s t V a l i d R i n g =”0”
46 L a s t V a l i d R i n g =”0” U s e V a l i d R i n g s O n l y=”FALSE”>
47 <HEADER><![CDATA[U n i t=Wierd u n i t s
48]]></HEADER>
49 <DATA><![CDATA[9 6 1 1 0 96 f i r e d a m a g e ; f i r e d a m a g e ;
50 34 1 1 0 34 f i r e d a m a g e ; f i r e d a m a g e ;
51]]></DATA>
52 </RECORD>
53 </PAST 4 PROJECT FILE>

Appendix O

Sheffield

Format name Sheffield
Other name(s) D Format
Type Text file
Extension(s) .d
Read/write support Read and write
Reference implementation Dendro for Windows
Data / metadata Data and some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support Yes
Multi series support No
Original designer Ian Tyers

O.1 Description

Sheffield format (?) is a dendro specific text file designed by Ian Tyers for his Dendro for Windows application.
It is probably most widely used in the UK but is also used in continental Europe as well as New Zealand.

The format contains both data and some structured metadata with each field/value stored one per line. The
order of fields is fixed so missing data must be indicated by the use of a question mark. The data present on
each line is as follows:

1. Site name/sample number - Free form text not including ,"() up to 64 characters
2. Number of rings - Whole positive number
3. Date type - Single character; A = absolute date, R = relative date
4. Start date - Whole number (can be negative). If absolute year then add 10000 to value so 1AD = 10001
5. Raw data type or Mean data type

I Single character; R = annual raw ring-width data (NB earlier versions used some other codes here
for species e.g. ABEFPSU these are all interpreted as equivalent to R)

I Single character; W=timber mean with signatures, X=chron mean with signatures, T = timber
mean, C = chron mean, M = un-weighted master sequence

6. Raw sapwood number or mean number of timbers/chronologies
I Whole positive number or 0
I Whole positive number

7. Raw edges inf. or Mean chronology type
I Single character; Y = has bark, ! = has ?bark, W = terminal ring probably complete (i.e. possibly

Winter Felled), S = terminal ring probably incomplete (i.e. possibly Summer Felled), B = has h/s
boundary, ? = has ?h/s boundary, N = has no specific edge, (NB but may have sap), U = sap/bark
unknown, C = charred outer edge, P = possibly charred outer edge

128 Tellervo: A guide for users and developers

I Single character; R = raw unfiltered data, 5 = 5 year running mean, I = indexed data, U = unknown
mean type

8. Author and comment - Free form text not including ,"() up to 64 characters
9. UK National grid reference - 2 characters +even no of digits up to 14 characters in all, ? = not known

e.g. TQ67848675
10. Latitude and longitude - Either decimal format e.g. 53.382457;-1.513623 or previously N51^30 W1^20
11. Pith - single character; C = centre of tree, V = within 5 years of centre, F = 5-10 years of centre, G =

greater than 10, ? = unknown
12. Cross-section code - Two character code; first character, A = whole roundwood, B = half round, C

quartered, D radial/split plank, E tangential/sawn plank. second character, 1 untrimmed, 2 trimmed, X
irregularly trimmed. or, X = core /unclassifiable, ? unknown/unrecorded

13. Major dimension - whole number in mm, 0 if unrecorded or mean
14. Minor dimension - whole number in mm, 0 if unrecorded or mean
15. Unmeasured inner rings - single character+whole number; use pith codes + number of rings or, H =

heartwood, N = none
16. Unmeasured outer rings - single character+whole number; use edges code + number of rings except that

S = sapwood with no edge and V is the spring felling equivalent other codes are, H = heartwood with
no edge, N = none

17. Group/Phase - free form text not including , ” () up to 14 characters
18. Short title - free form text not including , ” () up to 8 characters
19. Period - single character; C = modern, P = post medieval, M = medieval, S = Saxon, R = Roman, A

= pre Roman, 2 = duplicate e.g. repeat measure, B = multiperiod e.g. long master, ? = unknown
20. ITRDB species code - 4 character code - refer to ITRDB species codes
21. Interpretation and anatomical notes - ? =no interpretation/notes. The interpretation and the anatomical

notes can be in any order but each must consist of three parts, a single character A or I for anatomy or
interpretation, a separator , for interpretations the date of the start, for anatomy the ringno, a separator
, for anatomy the anatomical code for interpretations P for plus, 0 for felled and a number for the length
of the range, where more than one record is present these are separated by , there must not be a terminal
separator and each record must consist of the tree parts. The anatomical codings can be anything of a
single character but supported usage is based on Hans-Hubert Leuschners anatomical codes; D = Density
Band, R = Reaction Wood, L = Light Latewood, H = Dense Latewood, F = Frost Ring, K = Small
Earlywood Vessels - oak, G = Great Latewood Vessels - oak, T = Wound Tissue, N = Narrow Latewood,
A = Light Latewood End, P = Narrow and Light Latewood, Q = Narrow and Dense Latewood

22. Data type - single character; D = ring widths, E = early-wood widths only, L = late-wood widths only,
R = late+early wood widths (i.e. reverse of normal rings), I = minimum density, A = maximum density,
S = early, late; (i.e. sequentially and separately), M = mixed (?means of others)

The remaining lines contain the data:

I For each width (equivalent to the value of length) the individual increments etc. if a C X T or W type
mean. No negatives or zeros

I Check field - Single character H
I For each width the individual weightings of the mean sequences. If an X or W type mean. No negatives

or zeros.
I Check field - Single character R
I For each width the number of individual series with rising values. No negatives or zeros.
I Check field - Single character F
I For each width the number of individual series with falling values. No negatives.

O.2 Dating

The format copes with the problem of the non-existent year 0AD/BC by adding 10000 to all year values.
Therefore:

Sheffield 129

Year Value in file

1AD 10001
1BC 10000
9999BC 2
10000BC 1

O.3 Example file

1 Ship wreck 4 t i m b e r mean
2 170
3 A
4 10784
5 W
6 4
7 R
8 made PB 22/6/2004
9 ?

10 ?
11 ?
12 ?
13 0
14 0
15 N
16 N
17 A
18 Example
19 M
20 QUSP
21 ?
22 D
23 391
24 454
25 309
26 314
27 270
28 273
29 229
30 319
31 267
32 276
33 128
34 163
35 221
36 269
37 214
38 201
39 218
40 199
41 198
42 209
43 156
44 177
45 . . .

Appendix P

Topham

Format name Topham
Other name(s) Instrument format
Type Text file
Extension(s) txt
Read/write support Read and write
Reference implementation
Data / metadata Data only
Calendar type n/a
Absolute dating support No
Undated series support Yes
Relative dating support No
Multi series support No
Original designer John Topham

P.1 Description

The Topham format is probably the most simplistic of formats consisting of just a column of decimal data
values and no metadata whatsoever. Each data value is a decimal ring width in millimetres.

P.2 Example file

1 3 . 4 2
2 3 . 3 8
3 3 . 3 4
4 4 . 0 9
5 3 . 6 2
6 3 . 0 8
7 3 . 6 0
8 2 . 6 4
9 3 . 2 5

10 3 . 1 8
11 3 . 4 2
12 3 . 3 8
13 . . .

Appendix Q

TRiDaS

Format name TRiDaS
Other name(s) Tree-Ring Data Standard, TRiDaS XML
Type Text file
Extension(s) xml
Read/write support Read and write
Reference implementation TRiCYCLE
Data / metadata Data and structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support Yes
Multi series support Yes
Original designer Esther Jansma, Peter Brewer and Ivo Zandhuis

Q.1 Description

TRiDaS (Tree-Ring Data Standard see http://www.tridas.org) is a data format designed by over 80 den-
drochronologists, computer scientists and users of dendrochronological data from a variety of associated fields
as part of the DCCD project and the Dendro Data Standard forum. It is designed to accurately represent any
dendro data and metadata and it is hoped over time the dendro community will accept TRiDaS as the de facto
standard for all dendro data.

The format uses extensible markup language (XML) which means the standard can be extended and evolve as
future needs change. The format is structured around the eight data entities described below:

A project is defined by a laboratory and encompasses dendrochronological research of a particular object or
group of objects. Examples include: the dating of a building; the research of forest dynamics in a stand
of living trees; the dating of all Rembrandt paintings in a museum. What is considered a “project” is up
to the laboratory performing the research. It could be the dating of a group of objects, but the laboratory
can also decide to define a separate project for each object. Therefore, a project can have one or more
objects associated with it.

An object is the item to be investigated. Examples include: violin; excavation site; painting on a wooden
panel; water well; church; carving; ship; forest. An object could also be more specific, for example: mast
of a ship; roof of a church. Depending on the object type various descriptions are made possible. An
object can have one or more elements and can also refer to another (sub) object. For instance a single
file may contain three objects: an archaeological site object, within which there is a building object,
within which there is a beam object. The list of possible object types is extensible and is thus flexible
enough to incorporate the diversity of data required by the dendro community. Only information that is
essential for dendrochronological research is recorded here. Other related data may be provided in the
form of a link to an external database such as a museum catalogue.

http://www.tridas.org

134 Tellervo: A guide for users and developers

An element is a piece of wood originating from a single tree. Examples include: one plank of a water well; a
single wooden panel in a painting; the left-hand back plate of a violin; one beam in a roof; a tree trunk
preserved in the soil; a living tree. The element is a specific part of exactly one object or sub object. An
object will often consist of more than one element, e.g., when dealing with the staves (elements) of a
barrel (object). One or more samples can be taken from an element and an element may be dated using
one or more derivedSeries.

A sample is a physical specimen or non-physical representation of an element. Examples include: core from
a living tree; core from a rafter in a church roof; piece of charcoal from an archaeological trench; slice
from a pile used in a pile foundation; wax imprint of the outer end of a plank; photo of a back plate of
a string instrument. Note that a sample always exists and that it can either be physical (e.g. a core) or
representative (e.g. a picture). A sample is taken from exactly one element and can be represented by
one or more radii.

A radius is a line from pith to bark along which the measurements are taken. A radius is derived from exactly
one sample. It can be measured more than once resulting in multiple measurementSeries.

A measurementSeries is a series of direct, raw measurements along a radius. A single measurementSeries
can be standardised or a collection of measurementSeries can be combined into a derived- Series. The
measurements themselves are stored separately as values.

A derivedSeries is a calculated series of values and is a minor modification of the “v-series” concept proposed
by ?. Examples include: index; average of a collection of measurementSeries such as a chronology. A
derivedSeries is derived from one or more measurementSeries and has multiple values associated with it.

A value is the result of a single ring measurement. Examples include: total ring width; earlywood width;
latewood width. The values are related to a measurementSeries or a derivedSeries. In case of a mea-
surementSeries the variable and its measurement unit (e.g. microns, 1/100th mm etc) are recorded as
well.

For a full description of the standard see ?.

Q.2 Example file

1 <? xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8”?>
2 < t r i d a s x m l n s : x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”
3 x s i : s c h e m a L o c a t i o n=” h t t p : //www. t r i d a s . o rg / 1 . 2 . 1 . . / dev / s o u r c e f o r g e / t r i d a s /XMLSchema

/ 1 . 2 . 1 / t r i d a s −1 . 2 . 1 . xsd ”
4 xmlns=” h t t p : //www. t r i d a s . org / 1 . 2 . 1 ” x m l n s : x l i n k=” h t t p : //www. w3 . org /1999/ x l i n k ”>
5 <p r o j e c t>
6 < t i t l e>Aegean D e n d r o c h r o n o l o g y P r o j e c t</ t i t l e>
7 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”>C</ i d e n t i f i e r>
8 <createdTimestamp c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
9 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

l a s t M o d i f i e d T i m e s t a m p>
10 <t y p e>Dat ing</ t y p e>
11 <d e s c r i p t i o n>Our key long−r a n g e g o a l i s to b u i l d l o n g m u l t i−m i l l e n n i a l s c a l e t r e e

−r i n g
12 c h r o n o l o g i e s i n t h e Aegean and Near East t h a t w i l l e x t e n d from t h e p r e s e n t to

t h e
13 e a r l y Holocene to cover , b r o a d l y s p e a k i n g , t h e l a s t 10 ,000 y e a r s o f human and
14 e n v i r o n m e n t a l h i s t o r y . Our r a i s o n d ’ e t r e i s to p r o v i d e a d a t i n g method f o r

t h e s t u d y
15 o f h i s t o r y and p r e h i s t o r y i n t h e Aegean t h a t i s a c c u r a t e to t h e y e a r . Th i s

k i n d o f
16 p r e c i s i o n has , up to now , been l a c k i n g i n a n c i e n t s t u d i e s o f t h i s a r e a .

Indeed , few
17 a r c h a e o l o g i c a l p rob lems s t i m u l a t e as much r a n c o r as c h r o n o l o g y , e s p e c i a l l y

t h a t o f
18 t h e E a s t e r n M e d i t e r r a n e a n . The work o f t h e Aegean and Near E a s t e r n

D e n d r o c h r o n o l o g y
19 P r o j e c t aims to h e l p to b r i n g some k i n d o f r a t i o n a l and n e u t r a l o r d e r to

Aegean and
20 Near E a s t e r n c h r o n o l o g y from t h e N e o l i t h i c to t h e p r e s e n t . </ d e s c r i p t i o n >
21 < l a b o r a t o r y >
22 <name>Malcolm and C a r o l y n Weiner L a b o r a t o r y f o r Aegean and Near E a s t e r n

Dendrochrono logy </name>

TRiDaS 135

23 <a d d r e s s>
24 <a d d r e s s L i n e 1 >B48 Goldwin Smith H a l l </a d d r e s s L i n e 1 >
25 <a d d r e s s L i n e 2 >C o r n e l l U n i v e r s i t y </a d d r e s s L i n e 2 >
26 <cityOrTown>I t h a c a </cityOrTown>
27 <s t a t e P r o v i n c e R e g i o n >NY</s t a t e P r o v i n c e R e g i o n >
28 <posta lCode >14853</ posta lCode>
29 <count ry>USA</count ry>
30 </a d d r e s s>
31 </ l a b o r a t o r y >
32 <c a t e g o r y>Archaeo logy </c a t e g o r y>
33 < i n v e s t i g a t o r >P e t e r I Kuniholm</ i n v e s t i g a t o r >
34 <p e r i o d >1976−p r e s e n t </p e r i o d>
35 <r e f e r e n c e >r e f e r e n c e 1 </ r e f e r e n c e >
36 <o b j e c t >
37 < t i t l e >White Tower , T h e s s a l o n i k i </ t i t l e >
38 < i d e n t i f i e r domain=”dendro . c o r n e l l . edu ”
39 >28acb483−f337−412 f−a063−59d911c37594</ i d e n t i f i e r >
40 <createdTimestamp c e r t a i n t y =”e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</createdTimestamp>
41 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y =”e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

l a s t M o d i f i e d T i m e s t a m p>
42 <t y p e normalStd=”C o r i n a D i c t i o n a r y ” n o r m a l I d =”4” normal=” B u i l d i n g ”>B u i l d i n g </

type>
43 <d e s c r i p t i o n >The White Tower o f T h e s s a l o n i k i was o r i g i n a l l y c o n s t r u c t e d by

t h e Ottomans
44 to f o r t i f y t h e c i t y ’ s h a r b o u r .</ d e s c r i p t i o n>
45 <c o v e r a g e>
46 <coverageTempora l>Ottoman</ coverageTempora l>
47 <c o v e r a g e T e m p o r a l F o u n d a t i o n>S t y l i s t i c</ c o v e r a g e T e m p o r a l F o u n d a t i o n>
48 </ c o v e r a g e>
49 < l o c a t i o n>
50 < l o c a t i o n G e o m e t r y x m l n s : g m l=” h t t p : //www. o p e n g i s . n e t /gml”>
51 <g m l : P o i n t srsName=” u r n : o g c : d e f : c r s : E P S G : 6 . 6 : 4 3 2 6 ”>
52 <g m l : p o s>40.6263 22.9485</ g m l : p o s>
53 </ g m l : P o i n t>
54 </ l o c a t i o n G e o m e t r y>
55 < l o c a t i o n P r e c i s i o n>20</ l o c a t i o n P r e c i s i o n>
56 <locat ionComment>T h e s s a l o n i k i , Greece</ locat ionComment>
57 </ l o c a t i o n>
58 <o b j e c t>
59 < t i t l e>Fourth f l o o r</ t i t l e>
60 <t y p e>F l o o r</ t y p e>
61 <e l e m e n t>
62 < t i t l e>C−TWT−65</ t i t l e>
63 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
64 >89 dbd409−03a3−42a0−9391−62 c6be7009ad</ i d e n t i f i e r>
65 <createdTimestamp c e r t a i n t y=” e x a c t ”>1997−02−01 T14:13 :51 . 0 Z</

createdTimestamp>
66 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
67 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
68 <t y p e normalStd=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”3” normal=” R a f t e r ”>

R a f t e r</ t y p e>
69 <d e s c r i p t i o n>15 th R a f t e r from t h e s o u t h</ d e s c r i p t i o n>
70 <taxon normalStd=” C a t a l o g u e o f L i f e Annual C h e c k l i s t 2008 ” normal=”

Quercus ”
71 n o r m a l I d=” 49139 ”>Quercus sp .</ taxon>
72 <d i m e n s i o n s>
73 <u n i t n o r m a l T r i d a s=” metre s ”/>
74 <h e i g h t>1</ h e i g h t>
75 <width>1</ width>
76 <depth>1</ depth>
77 </ d i m e n s i o n s>
78 <a u t h e n t i c i t y>O r i g i n a l</ a u t h e n t i c i t y>
79 <sample>
80 < t i t l e>C−TWT−65−A</ t i t l e>
81 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
82 >f f 6883 57−b2d4−4394−a21a−90696 cd4558c</ i d e n t i f i e r>
83 <createdTimestamp c e r t a i n t y=” e x a c t ”
84 >1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
85 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
86 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
87 <t y p e normal=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”1” normalStd=” S e c t i o n ”

136 Tellervo: A guide for users and developers

88 >S e c t i o n</ t y p e>
89 <sampl ingDate c e r t a i n t y=” e x a c t ”>1981−07−25</ sampl ingDate>
90 <s t a t e>Dry</ s t a t e>
91 <r a d i u s>
92 < t i t l e>C−TWT−65−A−B</ t i t l e>
93 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
94 >5 b7baa8b−cd4e−4b3b−88fa −82939420 e544</ i d e n t i f i e r>
95 <createdTimestamp c e r t a i n t y=” e x a c t ”
96 >2006−05−04 T18:13 :51 . 0 Z</ createdTimestamp>
97 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
98 >2006−05−04 T18:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
99 <woodCompleteness>

100 <p i t h p r e s e n c e=” a b s e n t ”/>
101 <heartwood p r e s e n c e=” i n c o m p l e t e ”/>
102 <sapwood p r e s e n c e=” complete ”/>
103 <bark p r e s e n c e=” p r e s e n t ”/>
104 </ woodCompleteness>
105 <m e a s u r e m e n t S e r i e s>
106 < t i t l e>C−TWT−65−A−B−A</ t i t l e>
107 < i d e n t i f i e r domain=” dendro . c o r n e l l . edu ”
108 >8 c50234e−8eda−41bb−b578−01cc881d1ea1</ i d e n t i f i e r>
109 <createdTimestamp c e r t a i n t y=” e x a c t ”
110 >1997−02−01 T14:13 :51 . 0 Z</ createdTimestamp>
111 <l a s t M o d i f i e d T i m e s t a m p c e r t a i n t y=” e x a c t ”
112 >1997−02−01 T14:13 :51 . 0 Z</ l a s t M o d i f i e d T i m e s t a m p>
113 <a n a l y s t>Laura S t e e l e</ a n a l y s t>
114 <d e n d r o c h r o n o l o g i s t>P e t e r I Kuniholm</ d e n d r o c h r o n o l o g i s t>
115 <measuringMethod normalStd=” C o r i n a D i c t i o n a r y ” n o r m a l I d=”

1”
116 >Measur ing p l a t f o r m</ measur ingMethod>
117 < i n t e r p r e t a t i o n>
118 < f i r s t Y e a r s u f f i x=”AD”>1254</ f i r s t Y e a r>
119 <s t a t F o u n d a t i o n>
120 <s t a t V a l u e>8 . 3</ s t a t V a l u e>
121 <t y p e>t−s c o r e</ t y p e>
122 <u s e d S o f t w a r e>C o r i n a 2 . 1 0</ u s e d S o f t w a r e>
123 </ s t a t F o u n d a t i o n>
124 <deathYear s u f f i x=”AD”>1535</ deathYear>
125 <p r o v e n a n c e>P o s s i b l y from t h e r e g i o n o f S e r r e s</

p r o v e n a n c e>
126 </ i n t e r p r e t a t i o n>
127 <v a l u e s>
128 <v a r i a b l e n o r m a l T r i d a s=” Ring width ”/>
129 <u n i t n o r m a l T r i d a s=” 1/100 th m i l l i m e t r e s ”/>
130 <v a l u e v a l u e=”54”/>
131 <v a l u e v a l u e=” 111 ”/>
132 <v a l u e v a l u e=”71”/>
133 <v a l u e v a l u e=”40”/>
134 <v a l u e v a l u e=”56”/>
135 </ v a l u e s>
136 </ m e a s u r e m e n t S e r i e s>
137 </ r a d i u s>
138 </ sample>
139 </ e l e m e n t>
140 </ o b j e c t>
141 </ o b j e c t>
142 </ p r o j e c t>
143 </ t r i d a s>

Appendix R

TRIMS

Format name TRIMS
Other name(s) None known
Type Text file
Extension(s) .rw
Read/write support Read and write
Reference implementation
Data / metadata Data only
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support No
Original designer Unknown

This is a simple data only text file format. These files were originally produced using the Henson rotary
micrometer measuring stages but have largely been phased out.

I Line 1 - Initials of user that created the series
I Line 2 - Date the file was created in dd/MM/YY format
I Line 3 - Year of first data value (0 treated as undated series)
I Line 4+ - Space character followed by an integer data value in 1/100th mm
I Final line - Space character + 999 denoting end of series.

R.1 Example file

1 pb
2 05/10/94
3 1816
4 169
5 96
6 165
7 85
8 139
9 87

10 112
11 . . .
12 999

Appendix S

Tucson

Format name Tucson
Other name(s) Decadal, RWL, CRN, ITRDB, Time series format, TSF
Type Text file
Extension(s) Various including tuc, rwl, dec, crn
Read/write support Read and write
Reference implementation COFECHA
Data / metadata Data with some structured metadata, however, standardisa-

tion of metadata is very poor resulting in metadata often being
little more than free text comments

Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Richard Holmes

S.1 Description

The Tucson format is perhaps the most widely used dendro data format. Unfortunately it seems there was never
definitive documentation. Support for the format has been incorporated into a number of dendro applications
but without format documentation there are variations in these implementations resulting in quite a lot of
subtle differences in files. The often tight association between the Dendro Program Library (DPL) and the
ITRDB means that perhaps the most definitive documentation for the format is the ITRDB website.

The Tucson format is best considered as covering two different sub-formats which are often referred to by their
file extensions (RWL and CRN). RWL files are used for storing ring-width data, whereas CRN files are used
for storing chronologies.

The ITRDB website includes detailed information on how to include structured metadata in Tucson format
files. Unfortunately there are no tools for creating and/or validating Tucson files so the vast majority of files
circulating in the community today (including those in the ITRDB) do not adhere to these standards.

S.2 RWL files

Tucson RWL files begin with three lines of metadata. Strictly these lines should contain structured metadata,
but with no software to assist in this, users either only partially stick to these rules, or reject them entirely
instead using the three lines as free-text comment lines. The metadata should be set out as follows:

I Line 1 - Chars 1-6 Site ID

140 Tellervo: A guide for users and developers

I Line 1 - Chars 10-61 Site Name
I Line 1 - Chars 62-65 Species Code followed by optional ID number
I Line 2 - Chars 1-6 Site ID
I Line 2 - Chars 10-22 State/Country
I Line 2 - Chars 23-30 Species
I Line 2 - Chars 41-45 Elevation
I Line 2 - Chars 48-57 Lat-Long in degrees and minutes, ddmm or dddmm
I Line 2 - Chars 68-76 1st and last Year
I Line 3 - Chars 1-6 Site ID
I Line 3 - Chars 10-72 Lead Investigator
I Line 3 - Chars 73-80 comp. date

Then follows the data lines which are set out as follows:

I Chars 1-8 - Series ID - the series ID should be unique in the file so that it is clear where one series ends
and another begins when multiple series are present in the same file.

I Next 4 chars - Year of first value in this row.
I Ten data values consisting of a space character and 5 integers. The file and last data line for a series

may have less than 10 data values so that the majority of lines begin at the start of a decade.

The final data value should be followed by a a stop marker which is either 999 or -9999. When a stop marker
of 999 is used this indicates that the integer values in the file are measured in 0.01mm (1/100th mm) units,
whereas if a -9999 stop marker is used the units are 0.001mm (microns). The stop marker is therefore used to
indicate the end of the data series and the units the data are stored in.

There appears to be no official specification as to how missing rings should be encoded, but the standard
notation seems to be to use -999 or 0.

S.3 CRN files

Tucson CRN files are used to store chronology data. In addition to each data values they also have space
for a sample depth or count value to record how many values were combined to give each data value. CRN
files should strictly begin with the same 3 header lines that are described above for RWL. Like RWL files the
specification is often partially adhered to and at times ignored completely.

The data lines for CRN files are quite different to RWL:

I Chars 1-6 - Series ID
I Next 4 chars - Year of first value in this row.
I Ten data value blocks consisting of four integer characters for the data value, then a space, then two

integer characters for sample depth.

The stop marker in a CRN file should be 9990.

S.4 Workarounds and quirks

I No information was given as to how to handle the non-existent year 0AD/BC. For data files with years
all in the AD period, this is not a problem. Most dendro software seem to treat year numbers in Tucson
files as using the ’Astronomical Calendar’ whereby 1 = 1AD, 0=1BC, -1=2BC etc. This goes against
what most dendrochronologists assume (and do) when using Tucson files. For instance most people that
work entirely in the BC period use negative integers to represent BC years e.g. -5 as 5BC. With no
clear specification and different people interpreting the format in different ways, there is no way of being
certain what data negative year numbers in Tucson files mean.

I Tucson format places a restriction of just four characters to the year values. This means that strictly
the earliest value a Tucson file can represent is -999. Some users work around this by steeling the last
character of the series ID to give them five characters for the year. For example: ABCDEFG-9999. This

Tucson 141

conversely limits the series ID to 7 characters. To add to the confusion, other users have been known to
add an arbitrary number (e.g. 5000) to all year numbers to overcome this problem.

I The fact that 999 is used as the stop marker for series in 1/100th mm means that Tucson files cannot
store a ring value of 9.99mm. In the unlikely event that a sample should have this large a ring, it should
be rounded up or down to 998 or 1000.

I Some programs appears to add padding values after the stop marker to fill the rest of the 10 data values
in the row.

I Some data files seem to use 9990 as a stop marker
I Some files appears to use a full-stop character to indicate empty data values after the stop marker.
I Data values in RWL files are space delimited, however some programs use tabs instead.
I When reading Tucson files, COFECHA and ARSTAN ignore all lines that do not match the standard

data line format. As such, some users have used this to enable them to include multiple comment lines
in their files.

I The ITRDB documentation says they should be recorded as DDMM or DDDMM, but this along with
sign (N,S,E,W,+ or -) would require 11 characters, when the Tucson specification only allows for 10.
Perhaps this was due to an assumption that all places would be in the northern hemisphere? This has
resulted in a large amount of variation in the way that coordinates are recorded making it extremely
difficult to parse them without error. Here are some examples (including some that use 11 chars not 10):

– 4652N01101E
– +4652-01101
– N4652E01101

– 4652-01101
– 465201101
– 4652 01101

S.5 Example file - raw series

1 107 1 OBERGURGL
2 107 2 AUSTRIA NORWAY SPRUCE 6726 4652 N01101E 1911 1959
3 107 3 GIERTZ 08 76
4 107011 1911 78 93 43 100 93 110 135 115 102
5 107011 1920 92 125 110 135 98 80 75 125 102 110
6 107011 1930 105 105 95 120 135 140 110 120 130 135
7 107011 1940 120 130 130 165 135 145 155 160 88 135
8 107011 1950 140 150 140 130 115 130 130 110 110 135
9 107011 1960 125 120 135 160 15 102 105 135 105 140

10 107011 1970 120 115 100 110 110 999
11 107012 1862 450 580 550 480 620 420 390 420
12 107012 1870 360 370 300 360 470 460 410 430 510 500
13 107012 1880 500 510 500 410 380 430 340 380 350 400
14 107012 1890 290 260 270 320 340 370 330 310 240 170
15 107012 1900 280 300 300 310 350 400 300 280 280 180
16 107012 1910 190 290 270 210 230 300 220 360 240 260
17 107012 1920 200 270 250 230 270 210 160 210 220 200
18 107012 1930 170 250 200 130 140 210 210 180 190 180
19 107012 1940 170 180 190 190 190 200 190 180 110 180
20 107012 1950 220 230 180 220 200 240 220 210 240 999

S.6 Example file - chronology

1 107089 1 Anta lya , E l m a l i I s l e t m e s i CDLI
2 107089 2 Turkey Cedar 1800M 3640 02955 1370 1988
3 107089 3 P e t e r I . Kuniholm
4 1070001370 567 11115 1 798 11105 11407 1 398 1 436 1 543 1 490 1 225 1
5 1070001380 127 1 39 1 29 1 69 1 178 1 445 1 227 1 510 11020 11120 1
6 10700013901390 11310 1 979 11585 11111 1 444 1 214 1 520 1 275 1 224 1
7 1070001400 153 1 371 1 567 1 711 1 835 1 687 1 322 1 291 1 291 1 218 1
8 1070001410 168 1 378 1 557 1 410 1 315 1 202 1 531 1 765 1 797 1 840 1
9 1070001420 440 1 774 1 946 1 838 1 397 1 380 1 206 1 510 1 695 1 521 1

10 1070001430 461 1 978 1 967 1 857 1 978 1 733 1 522 1 333 1 577 1 477 1
11 1070001440 730 1 752 1 932 1 955 1 898 1 629 11170 1 738 1 920 1 363 1

142 Tellervo: A guide for users and developers

12 1070001450 863 1 896 1 965 1 390 1 172 1 126 1 69 1 209 1 313 1 883 1
13 10700014601255 11220 11364 11035 11364 11282 11364 11611 11369 11273 1
14 10700014701797 12035 11821 11927 11819 11807 11464 21421 21009 21089 2
15 10700014801042 21040 21404 2 955 21291 2 982 21186 21042 2 728 2 781 2
16 1070001490 800 21040 2 503 2 869 21387 21365 21574 21591 22178 21594 3
17 10700015001629 31282 31126 31409 31433 31406 31239 31479 3 990 31063 3
18 10700015101026 31035 31175 31217 31500 31358 31171 31140 31005 31340 3
19 10700015201225 31164 31283 31496 31439 31603 31335 3 982 3 973 31147 3
20 10700015301086 31146 41403 41454 41209 41451 41292 4 964 41003 41289 4
21 1070001540 895 4 951 4 745 4 835 4 800 41182 4 952 41097 4 973 4 973 4
22 10700015501158 41370 41245 41392 41215 41047 51133 5 847 5 961 51295 5
23 10700015601287 51082 5 899 51012 51195 51409 51107 5 962 5 970 51031 5
24 1070001570 990 51028 51206 51092 51414 51209 51090 51265 51261 51019 5
25 1070001580 791 5 995 5 956 5 933 61144 61022 61001 61007 61097 61290 6
26 10700015901263 6 902 71002 71151 71032 8 968 8 592 8 940 8 936 81131 8
27 10700016001098 81128 81334 81255 91136 91097 101273 101075 10 952 10 897 10
28 1070001610 915 10 991 10 735 10 708 10 627 10 848 101010 10 872 10 959 101138 10
29 10700016201173 101122 101191 101146 10 928 10 820 10 935 10 741 10 812 101126 10
30 10700016301123 10 781 101111 101054 101275 101052 101068 101049 101016 10 970 10
31 10700016401093 101159 101023 101159 101060 101117 101314 10 843 101057 101040 10
32 10700016501030 101268 10 971 101059 101078 101170 101159 101388 101194 101260 10
33 1070001660 917 101222 101052 101165 101325 101608 101161 121181 12 931 12 992 12
34 1070001670 750 12 675 12 614 12 638 12 624 12 600 12 506 12 681 12 887 12 708 12
35 1070001680 797 12 940 12 955 12 886 12 878 12 970 12 916 12 861 12 861 121021 13
36 1070001690 928 13 961 131043 13 936 13 939 131003 13 619 13 846 13 838 13 822 13
37 1070001700 717 13 699 14 746 14 900 141022 14 781 14 968 141028 141051 141341 14
38 1070001710 980 14 817 14 718 14 642 14 554 14 589 14 637 14 677 16 710 16 877 16
39 1070001720 930 16 931 16 718 16 721 16 616 16 576 16 519 16 790 161046 161067 16
40 10700017301047 171141 181080 181128 181144 181112 191066 191252 19 971 191076 19
41 10700017401284 191242 191001 191145 191219 191162 19 576 20 979 231148 231062 23
42 10700017501119 231255 231267 231352 231397 231487 231116 231092 231150 23 938 23
43 10700017601118 241240 241258 241023 24 971 241071 241124 241225 241135 241114 24
44 10700017701072 241171 24 853 24 964 241075 24 820 241154 241059 241270 241022 24
45 10700017801098 24 903 241038 241147 241141 241162 24 782 241221 241424 241208 24
46 1070001790 974 241265 241256 241281 241166 241580 24 889 24 955 241158 241101 24
47 1070001800 949 24 990 24 813 24 758 24 821 24 914 24 889 24 999 24 991 241163 24
48 10700018101068 241184 24 852 24 870 241037 241070 241132 241047 24 978 24 852 24
49 1070001820 839 241063 241045 24 957 24 958 24 997 24 841 241209 241053 241013 24
50 1070001830 920 241103 241151 241166 24 850 24 962 24 944 24 871 24 989 24 906 24
51 1070001840 697 24 973 24 779 24 647 24 689 24 731 24 981 24 709 24 949 24 580 24
52 1070001850 619 24 345 24 545 24 688 24 723 241046 24 738 24 785 24 742 24 815 24
53 1070001860 842 241015 24 888 24 884 24 792 24 594 24 902 24 885 24 841 24 770 24
54 1070001870 822 24 710 24 838 24 783 24 697 24 768 24 515 24 670 24 855 24 793 24
55 10700018801021 25 932 25 799 25 902 251038 251017 25 739 25 750 25 963 251149 25
56 1070001890 798 24 871 24 870 24 625 24 772 24 827 241046 241182 24 701 24 704 24
57 1070001900 977 241237 241249 241162 241118 241007 241271 241123 241116 241045 24
58 10700019101167 24 827 24 482 24 952 241370 241260 24 783 241169 241096 241108 24
59 10700019201387 241484 241293 241182 241282 241527 241261 241146 24 920 24 859 24
60 10700019301235 241335 24 799 24 819 241000 24 763 241111 241019 24 916 241252 24
61 10700019401537 241387 231217 23 929 23 685 23 894 231106 231123 231089 23 896 23
62 10700019501384 231172 231151 231130 231244 231187 231118 231144 231268 231245 23
63 10700019601547 231015 231208 231203 231109 23 602 23 690 23 684 23 901 23 968 23
64 1070001970 963 231095 231368 231069 231084 21 936 191146 191362 191288 191572 19
65 10700019801034 19 870 191186 191047 19 968 191089 191272 191231 191083 189990 0

Appendix T

Tucson Compact

Format name Tucson Compact
Other name(s) Compact
Type Text file
Extension(s) rwm
Read/write support Read and write
Reference implementation Various DPL programs including FMT
Data / metadata Data only
Calendar type Astronomical
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Richard Holmes

T.1 Description

The Tucson Compact format was design by Richard Holmes for use with a number of the applications in the
Dendro Program Library (DPL). Holmes designed it as a space saving alternative to the standard Tucson format
at a time when disk space was expensive. The format never really caught on, perhaps due to the complexity
and variability of the format.

The key feature of Tucson Compact format is the inclusion of a code that describes the layout of the data
within the series. This code means that only the required amount of space is allocated to each data value in
the text file with little wastage. No space is provided for metadata.

Tucson Compact files can contain one or more series of data so the description of a data series below can be
repeated multiple times in a single file. All lines should be 80 characters long and the first line of a series is
denoted by a tilde () in the final column. This meta line contains four fields:

I Chars 0-9 = number of data values terminated with =N
I Chars 11-19 = start year terminated with =I
I Chars 21-68 = series title
I Chars 69-79 = fortran format descriptor
I Char 80 = Tilde marker

The Fortran format descriptor in the example below is -2(26F3.0). The constituent parts are as follows:

I -2 = this is the scaling factor for the data values. In this case -2 = 10-2 = 0.01. Please note that in the
Convert5 program this scaling factor is only read once in the first header line so files with multiple series
each with different scaling factors will read incorrectly.

I 26F = means there are 26 values in each line
I 3.0 = means that each data value should be read as 3 integer values

144 Tellervo: A guide for users and developers

The example below therefore means there are 26 data values per line each consisting of 3 digits which should
be interpreted by multiplying by 0.01 (i.e. values are in 1/10ths mm).

T.2 Example file

1 176=N 1277= I ABCD01 −2(26F3 . 0) ˜
2 142338334409362308360264325318134151219268290222278258173198294202170176172121
3 87130114108170135131126 87100 86104103127112 94 96120168149119124 79 67 88 90
4 93 77 49 42 53 38 57 43 50 41 56 66 62 55 55 45 47 63 58 60 44 45 49 50 62 61
5 43 54 91 60 56 43 52 51 65 68 55 44 41 75 94 78 63 69 58 75 55 47 58 46 62 45
6 52 50 77 50 63 75 77 64 66 57 80 57 78 65 68 75 65 98 85 82119 89 85 87 83108
7 129123160117129121 88 69 97 77 96106 71 89 50 65133 89 88 50 60 95 95 91102158
8 83 55 98 70 45 46 40 36 64 58 52 58 56 94 51 48 47 60 49 48

Appendix U

VFormat

Format name VFormat
Other name(s) OJ Format
Type Text file
Extension(s) Various depending on data type but commonly .!oj
Read/write support Read and write
Reference implementation VFormat
Data / metadata Data with some structure metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support No
Relative dating support No
Multi series support Yes
Original designer Thomas Reimer and Hans-Hubert Leuschner

U.1 Description

A relatively extensive format which includes highly encoded header lines for metadata. VFormat files have an
array of file extensions depending on the type of data the files contain.

VFormat files can contain mutliple data series. Each series contains 2-4 header lines followed by a number of
data lines. The metadata fields are encoded into the header lines in specific character positions. In line 1 the
character positions are as follows:

I 1-12 = Series identifier. The series identifier also determines the filename. If there is just one series
in the file then the series identifier will be the same as the filename. For files with multiple series, the
filename will use characters 1-7 of the series identifiers that are the same throughout the file with the
remaining (different) characters replaced by an underscore. The 8th character of the filename would
contain a running number for files that would otherwise be named the same. The series identifier is
made up of the following characters:

– 1 = Code representing the project or country
– 2 = Code representing the region of ecological area
– 3-4 = Code number for sample site (optionally encoded using hexadecimal or hexatresimal to enable

values greater than 99).
– 5-6 = Series/tree number (optionally encoded using hexadecimal or hexatresimal to enable values

greater than 99).
– 7 = Height code encoded as follows: 1 = 1m, 2=2m, 9=9m, A=10m, B=11m, S = Lumber height

30cm, T = breast height =130cm.
– 8 = Running number if several series have the same values in columns 1-7.
– 9 = Fixed as a dot character
– 10 = Either ! (single), % (partial), # (mean curves or chronologies)

146 Tellervo: A guide for users and developers

– 11 = Code for statistical treatment. One of F (frequency filtered series); I (index); M (mean); O
(original); P (pointer-year stat); Q (cluster-pointer-year stat); R (residual); S (moving deviation
or variance); T (trend, fitted curve, model); W (wuchswert); X (series with standardized running
mean and variance); Z (central moment, deviation or variance between several series).

– 12 = Code for the measured parameter. One of D (mean density); F (earlywood width); G (max-
imum density); J (ring width); K (minimum density); P (percentage latewood); S (width of late-
wood).

I 13-15 Measurement units
I 16-20 Length of series
I 21-24 Species either encoded using ITRDB taxon codes or by using the first two letters of the genus and

species.
I 25-30 Year of the last ring
I 31-50 Description
I 51-58 Measurement date (ddMMyy or ddMMyyyy)
I 59-60 Initials of author
I 61-68 Last modified date (ddMMyy or ddMMyyyy)
I 69-70 VFormat version identifier (00,01 etc)
I 71-73 Estimated number of missing rings as the start of the series
I 74-75 Standard error of this estimate (. if unknown)
I 76-78 Estimated number of missing rings at the end of the series
I 79-80 Standard error of this estimate (. if unknown)

The second data line is a free text comment up to 80 characters.

VFormat files from version 10 onwards then contain a third header line. This contains 8 floating point numbers
of 10 digits each. These represent:

I Longitude
I Latitude
I Altitude
I Height of the tree’s measurement
I Four other user definable numbers

VFormat files from version 20 onwards contain a forth header line. This is of the same format as line 3 but
each of the values is user definable.

Following the 2-4 header lines come the data lines. These lines are made up of 10 data fields each containing
8 characters. Each data field is made up as follows:

I Two character code for validity and importance:
– space = full validity
– ! = not yet used
– ” = not yet used
– # = not yet used
– $ = no validity for long-term evaluations
– % = no validity for single-value evaluations
– & = no validity except for cumulative stats
– ’ = no validity at all, unknown value

The second character is a pseudo-binary character used to define a weighting factor. For full details of the
complex method for calculating this weighting factor see the VFormat documentation.

I One character user definable code for recording information about the data value
I Five digit floating point data value which is divided by 100 for interpretation

U.2 Example file

1 G1101020 . ! OJmm 81Qusp 1510FLA−02 32 /572 HL01 . 0 4 . 9 0 0 2 810 10 .
2 G1101020 . ! OJ/ S20102 0 . ! OJ/

VFormat 147

3 281 221 225 169 178 197 126 103 112 130
4 132 207 176 175 126 150 99 131 187 204
5 218 172 202 115 135 130 196 135 142 129
6 144 116 92 71 109 120 137 98 86 117
7 64 79 72 61 62 82 75 81 83 69
8 83 66 84 95 85 94 87 99 92 109
9 150 108 70 113 119 120 122 107 111 114

10 123 145 112 145 164 158 122 177 155 182
11 153
12 G1101050 . ! OJmm 121 Qusp 1516FLA−05 13 /586 HL01 . 0 4 . 9 0 0 2 1510 13 .
13 G1101050 . ! OJ/ S20105 0 . ! OJ/
14 448 286 341 213 346 371 745 719 580 466
15 487 353 279 323 422 436 351 238 135 172
16 179 210 277 145 165 261 263 190 194 183
17 127 110 144 189 135 154 217 110 115 99
18 106 101 106 198 191 185 185 160 112 152
19 93 95 83 176 165 193 139 101 93 113
20 85 145 174 157 132 130 74 52 114 138
21 174 132 144 125 83 124 118 127 150 189
22 152 133 117 91 104 96 56 90 130 126
23 103 163 92 103 174 99 117 85 123 116
24 147 127 145 133 155 144 114 115 121 111
25 174 113 112 89 99 130 111 104 164 110
26 139

Appendix V

WinDENDRO

Format name WinDENDRO
Other name(s)
Type Text file
Extension(s) txt
Read/write support Read only
Reference implementation WinDENDRO
Data / metadata Data with some structured metadata
Calendar type Gregorian
Absolute dating support Yes
Undated series support Yes
Relative dating support No
Multi series support Yes
Original designer Regent Instruments

V.1 Description

WinDENDRO format is a dendro text file format designed by Regent Instruments for their WinDENDRO
software. Regent Instruments claims the format is proprietary. Although it is unclear whether such a claim is
legally binding for a plain text file, the authors of DendroFileIOLib have decided to comply by not implementing
a WinDENDRO format writer. However, in the interests of the dendro community and to ensure users can
gain access to their data, DendroFileIOLib does include support for reading WinDENDRO format files.

WinDENDRO files differ from most other formats in that they contain a great deal of information specific to
the image used to measure the sample. The WinDENDRO software allows users to measure ring widths from
scans or photographs of samples rather than by using a traditional measuring platform.

WinDENDRO files are really just tab-delimited text files with data in columns in a specific order with a few
additional header lines.

Line 1 should contain 8 tab-delimited fields

I Field 1 = WINDENDRO
I Field 2 = WinDENDRO file format version number, either 3 or 4
I Field 3 = Orientation of the data: R = in rows; C = in columns. All WinDENDRO files are in rows
I Field 4 = The column number where the data values begin. For version 3 files this is 13 and version 4

files this is 36
I Field 5 = The direction the data is recording in: P = pith to bark; B = bark to pith
I Field 6 = Whether the data is recorded incrementally (I) or cumulatively (C). WinDENDRO files are

always incremental.
I Field 7 = Whether the bark width has been measured (Y or N). If yes, then there will be one more data

value than there are rings

150 Tellervo: A guide for users and developers

I Field 8 = RING

Line 2 contains the field names. For version 3 files these are:

I TreeName - The name of the tree being measured
I Path identification - ID of the path along which the series is measured
I Site identification - Name of the site from which the tree was taken
I YearLastRing - Year of the last ring in the series
I Sapwood - Distance (in mm) from the start of the sample to the start of the sapwood.
I Tree height - Height of tree in metres
I Tree age - Age of the tree. If unknown this should be 0, then it is assumed to be equal to the number

of rings
I SectionHeight - Height up the tree in metres at which the sample was taken
I User variable - User defined variable - must be numerical
I RingCount - Number of rings the series contains
I DataType - Keyword indicating the type of data measured. This can be: RINGWIDTH; EARLYWIDTH;

LATEWIDTH; EARLYWIDTH%; LATEWIDTH%; DENSITY; EARLYDENSITY; LATEDENSITY; MAX-
DENSITY; MINDENSITY; RINGANGLE.

I OffsetToNext - The number of lines to skip to go to the next data line of the same type. For instance a
file can contain earlywood and latewood data for multiple samples. If this is the case then each sample
will have two rows, one for each variable, and the OffsetToNext field will be 1.

In additional to these fields, version 4 files also include the following:

I ImageName - The filename for the image used to do this analysis. If the image was taken directly from
the scanner or camera then this field will be SCANNER

I Analysis Date Time - Date and time the measurements were initially saved to disk in format dd/m-
m/YYYY HH:mm

I Acquisition Date Time - Date and time the image file was acquired in format dd/mm/YYYY HH:mm
I Modified Date Time - Date and time the file was last modified in format dd/mm/YYYY HH:mm
I ImageSize H V NBits Channel - The image size in pixels followed by bits per pixel per channel (8 or 16),

channel used for analysis (Grey, RGB, R G or B)
I CalibMethod XCal YCal EditedDendro - Method of calibration: Intr (Intrinsic); Obj (ObjKnownDiam).

This is followed by the size of a pixel and Y or N indicating if the image has been edited in WinDENDRO
I ScannerCamera Make Model Software - Details about the imaging hardware
I LensFocLength [35mm] - The 35mm equivalent focal length of the imaging lens
I PathBegX BegY EndX EndY Width - The coordinates for the start of the path/radius followed by the

path width
I RingBoundary AutoMan Meth Precise - Details about the path taken. Ring boundary - Tg (tangent to

ring) or Perp (perpendicular to path); Detection method - A (automatic) or M (manual); Ring detection
method - Int (intensity differences) or T&S (teach and show); whether the ’more precise detection’
method is active (Y) or not (N)

I EarlywoodDef - Earlywood-latewood transition criteria
I DensActive Media Calib - Density Analysis active (Y or N); Density Media setting (F - negative file

or photo, W wood direct xray, positive film or photo); Light calibration setting (Acq - after image
acquisition, Man - manual; No - none)

I DensNSteps MatDens Interpol - Number of steps and the density of the step wedge used for calibration
followed by the interpolation method used between steps: Lin (Linear) Spl (Spline)

I DensStepsThick - The thickness of each step of the wedge used for density calibration
I DensStepsLightInt - The light intensity of each step of the wedge determined during the light intensity

calibration
I DensStepsWoodDens - Equivalent wood density of each step of the wedge determined during light

intensity calibration
I DiskArea - Area of the sample
I DiskPerim - Perimeter of the sample
I DiskAvgDiam - Average diameter of the sample
I DiskFormCoef - Sample area form coefficient
I CompWoodArea - Total area occupied by the compression areas

WinDENDRO 151

I VoidArea - Total area occupied by the void areas
I PathLength - Length of radius measured

Lines 3+ contain the actual data and metadata, one line for each series. Following the 13 or 36 columns of
metadata (depending on file version) there are x number of columns containing ring values. The values are
recorded as floating point data. The units for these data values are: mm for widths; % for percentages; g/cm3

for densities; radians for angles.

Appendix W

XML Error Codes

Table W.1: The Corina webservice provides error feedback by means of an error code and description.

Section Code Description

General 001 Error connecting to database
002 Generic SQL error

Authentication 101 Authentication failed
102 Login required
103 Permission denied
104 Unsupported request
105 Invalid server nonce
106 User unknown
107 Unsupported client
108 Unsupported client version

Miscellaneous 666 Unknown Error
667 Program bug

Internal 701 Internal SQL error
702 Feature not yet implemented
703 Invalid XML being returned by webservice
704 Configuration error

User 901 Invalid user parameter(s)
902 Missing user parameter(s)
903 No records match
904 Parameters too short
905 Invalid XML request
906 Record already exists
907 Foreign key violation
908 Unique constraint violation
909 Check constraint violation
910 Invalid data type
911 Series with this version number already exists

Appendix X

GNU General Public License

The Corina server and desktop client are released under the GNU General Public License (GPL) version 3.

Copyright © 2011 Peter Brewer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

X.1 Preamble

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program–to
make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for
most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure
that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can
do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore,
you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom
of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For both users’
and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as
needed to protect the freedom of users.

http://fsf.org/

156 Tellervo: A guide for users and developers

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and
use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to
a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

The precise terms and conditions for copying, distribution and modification follow.

X.2 Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Li-
censees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other
than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based
on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable
for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification), making available to the public, and in some countries other
activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction
with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently
visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the
work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how
to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means
any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in
the case of interfaces specified for a particular programming language, one that is widely used among developers working
in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only
to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation
is available to the public in source code form. A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for
an executable work) run the object code and to modify the work, including scripts to control those activities. However, it
does not include the work’s System Libraries, or general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the
stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise
remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running the covered works for you
must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary.

GNU General Public License 157

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations
under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting
circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you
disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your
or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that
this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the
absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for
a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source
code under the terms of section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of
the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in
an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey
the machine-readable Corresponding Source under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied
by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied
by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for
all the software in the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such
an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not
require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that
supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used
for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of
the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its

158 Tellervo: A guide for users and developers

Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code
is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient
in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed
under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you
nor any third party retains the ability to install modified object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it
has been modified or installed. Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that
is publicly documented (and with an implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included
in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or
from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify
the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

(e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the
Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term
that is a further restriction, you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of
the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise
to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent
licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of
the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights
from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to
receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of
a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered
work, you indicate your acceptance of this License to do so.

GNU General Public License 159

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties
with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or
subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s
predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and
you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is
infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program
is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or
selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent
claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor
version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not
to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server
or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with
the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you
have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance
of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or
is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may
not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or
(b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those
to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain
entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work
licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination
as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.

160 Tellervo: A guide for users and developers

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the
GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions
either of that numbered version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of the GNU General Public License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on
any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their
terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for
a fee.

Appendix Y

GNU Free Documentation License

This manual is released inder the GNU Free Documentation License (FDL) v1.3.

Copyright ©2011 Peter W. Brewer.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Y.1 Preamble

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a

free program should come with manuals providing the same freedoms that the software does. But this License is not limited to

software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book.

We recommend this License principally for works whose purpose is instruction or reference.

Y.2 Terms and conditions

1. Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

http://fsf.org/

162 Tellervo: A guide for users and developers

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For works in formats which do not have any title page as
such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a
section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of
this License.

2. Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. Copying in quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number
of copies, to give them a chance to provide you with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

GNU Free Documentation License 163

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that was published at least four years before
the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version
by various parties—for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

5. Combining documents

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section
Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements”.

6. Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within

164 Tellervo: A guide for users and developers

the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under
this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of
the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights
from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some
or all of the same material does not give you any rights to use it.

10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. Relicensing

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable
works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an
example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation,
a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions
of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no
cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time
before August 1, 2009, provided the MMC is eligible for relicensing.

For Corina server and desktop
version 1.0

Compiled February 11, 2012

